PAPER 12

RAMSEY THEORY

Attempt THREE questions.
There are four questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let m be a positive integer. Using van der Waerden's theorem, show that there exists an ultrafilter on \mathbb{N}, each member of which contains an m-term arithmetic progression.
[Hint: Which are the sets that must belong to such an ultrafilter?]
Show similarly that there exists an ultrafilter on \mathbb{N}, each member of which contains arbitrarily long arithmetic progressions.

Does there exist an ultrafilter on \mathbb{N}, each member of which contains an infinite arithmetic progression?

2 State and prove the Hales-Jewett theorem, and deduce van der Waerden's theorem. Prove the strengthened van der Waerden's theorem.

State Gallai's theorem, and show how to deduce it from the Hales-Jewett theorem.

3 State and prove Rado's theorem.
[You may assume that, for any m, p, c, whenever \mathbb{N} is finitely coloured there is a monochromatic (m, p, c)-set.]

Deduce that, for any k, whenever \mathbb{N} is finitely coloured there exist $x_{1}, x_{2}, \ldots, x_{k}$ with $F S\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ monochromatic.

4 What does it mean to say that a subset of $\mathbb{N}^{(\omega)}$ is Ramsey? Give an example of a set that is not Ramsey. Prove that every τ-open set is Ramsey.

What does it mean to say that a subset of $\mathbb{N}^{(\omega)}$ is completely Ramsey? Give an example of a set that is Ramsey but not completely Ramsey.

Give an example of a (non-empty) $*$-open set that is τ-nowhere-dense. By choosing a suitable subset of this set, show that it is not the case that every τ-nowhere-dense set is completely Ramsey.

