PAPER 10

RAMSEY THEORY

Attempt any THREE questions. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let m be a positive integer. Show that, whenever $\mathbb{N}^{(2)}$ is red-blue coloured, there exists
either
(i) an m-term arithmetic progression M with $M^{(2)}$ blue
or
(ii) disjoint m-term arithmetic progressions A and B with every edge from A to B red.
[Hint: Suppose that every m-term arithmetic progression has at least one of its $\binom{m}{2}$ edges red. This gives a colouring of \mathbb{N}^{2} with $\binom{m}{2}$ colours, by colouring $(a, d) \in \mathbb{N}^{2}$ according to which edge of the arithmetic progression with first term a and common difference d is red. Now apply Gallai's theorem.]

2 State and prove the Hales-Jewett theorem, and deduce van der Waerden's theorem. Prove the strengthened van der Waerden's theorem.

State Gallai's theorem, and show how to deduce it from the Hales-Jewett theorem.

3 State and prove Rado's theorem.
[You may assume that, for any m, p, c, whenever \mathbb{N} is finitely coloured there is a monochromatic (m, p, c)-set.]

Deduce that, for any k, whenever \mathbb{N} is finitely coloured there exist x_{1}, \ldots, x_{k} with $F S\left(x_{1}, \ldots, x_{k}\right)$ monochromatic.
$4 \quad$ What does it mean to say that a subset of $\mathbb{N}^{(\omega)}$ is Ramsey? Prove that every $*$-Borel subset of $\mathbb{N}^{(\omega)}$ is Ramsey.

