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1 Let X and Y be sets of size m and n, respectively. Let f : X × Y → [−1, 1].

Prove that the following two properties of f are equivalent, in a sense that you
should explain:

(a) ∑
x,x′∈X

∑
y,y′∈Y

f(x, y)f(x, y′)f(x′, y)f(x′, y′) 6 c1m
2n2.

(b) For every subset A ⊂ X and every subset B ⊂ Y ,∣∣∣∑
x∈A

∑
y∈B

f(x, y)
∣∣∣ 6 c2mn.

Prove that there exists a function f taking values ±1 such that properties (a) and
(b) hold, with constants ci that converge to 0 as m and n tend to infinity.

2 State and prove some version of Szemerédi’s regularity lemma. Use it to prove that
for every δ > 0 there exists N such that for every subset A ⊂ {1, 2, . . . , N}2 of size at
least δN2 there exist x, y and d 6= 0 such that (x, y), (x, y + d) and (x + d, y) belong to A.

3 (i) Let A, B, C be subsets of ZN with |A| = αN , |B| = βN and |C| = γN .
Suppose that the number of quadruples (x, y, z, w) ∈ A4 such that x + y = z + w(mod N)
is at most (α4 + c)N3. Prove that the number of triples (a, b, c) ∈ A × B × C such that
a + c = 2b(mod N) differs from αβγN2 by at most f(c), where f(c) → 0 as c → 0.

(ii) Let δ > 0 and let A ⊂ {1, 2, . . . , N} be a set of size at least δN . Prove that
A + A + A contains an arithmetic progression of length at least Nr, where r > 0 depends
on δ only.
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