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1 Give the Bloch representation of the density matrix ρ of a qubit. What state does
the origin of the Bloch sphere correspond to?

Suppose Alice prepares a qubit in either one of two pure states ρ1 and ρ2 where

ρi = |ψi〉〈ψi|,

with

|ψ1〉 = |0〉 and |ψ2〉 = −1
2
|0〉+

√
3

2
|1〉.

She sends the qubit to Bob.

Find the Bloch vectors corresponding to these two states and determine the angle
between them.

Suppose Bob does a measurement characterized by three POVM elements, E1, E2

and E3, on the qubit that he receives from Alice. Given that

Ei =
2
3
|φi〉〈φi| for i = 1, 2, 3,

where

|φ1〉 = |1〉 and |φ2〉 =
√

3
2
|0〉+

1
2
|1〉,

determine the POVM element E3, and hence the vector |φ3〉.

Discuss the possible outcomes, their corresponding probabilities and Bob’s conclu-
sions. Justify that Bob never makes a mistake in identifying the state of the qubit.

2 A quantum operation is necessarily completely positive. Explain what is meant by
complete positivity. Prove that a map Φ which is defined as follows:

Φ(ρ) =
∑

k

AkρA
†
k,

where ρ denotes a density matrix and the Ak are linear operators, is completely positive.

Prove that the map Φ defined by Φ(ρ) = ρT , where T denotes transposition, is not
completely positive.
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3 Consider a 2-level atom A. If the atom is in its excited state then it has a probability
p of decaying to its ground state. This decay is accompanied by the spontaneous emission
of a photon.

(a) What is the quantum channel that can be used to model this atom? What are
its Kraus operators? What process does each of these Kraus operators correspond to?

(b) The atom is originally in a state ρ =
∑1

i,j=0 ρij |i〉〈j|. Here |i〉, i = 0, 1, denote
orthonormal basis states of the Hilbert space of the atom. By considering the unitary
evolution of the atom and its environment, deduce how the state of the atom changes
under the action of one use of the channel.

(c) What is the effect of two successive uses of the channel on the state ρ. Find
the final state after n uses of the channel, in the limit n→∞. What is the von Neumann
entropy of this state? Does it correspond to an information gain?

(d) What is a unital channel? Is this channel unital?

4 Quantum errors acting in an n-qubit Hilbert space H⊗n are characterized by an
error vector α = (α1, . . . , αn), where αi ∈ {I,X, Y, Z}. The corresponding operator is
called a Pauli operator and is given by:

Eα := E(j1)
αj1

· · ·E(jr)
αjr

,

where the operators E(ji)
αji

are defined by their actions on the basis vectors of H⊗n. What
are the actions of the operators E(j)

X , E(j)
Z and E(j)

Y on a basis state |x〉 ∈ H⊗n, where
x = (x1, . . . , xn) ∈ {0, 1}n ?

State the conditions under which a quantum error correcting code is (a) E error–
correcting and (b) D error–detecting. What are the conditions under which the code
corrects and detects these errors non-degenerately?

Using the above conditions, prove that an [[n, k, d]] quantum error-correcting code
detects (d − 1) errors and corrects (d − 1)/2 errors. What is the maximum number of
errors that the code could correct if their locations were known? Justify your answer.

The Shor code has the following basis codewords:

|0〉 =
1√
8

(
|000〉+ |111〉

)⊗3

|1〉 =
1√
8

(
|000〉 − |111〉

)⊗3
(1)

How would you use this code to correct a phase flip error? The Shor code corrects such
an error degenerately. Explain why.

Paper 33 [TURN OVER



4

5 (a) State the strong subadditivity property of the von Neumann entropy. Use it to
prove the following:

1. Discarding quantum systems never increases mutual information, i.e.,

S(ρA : ρB) ≤ S(ρA : ρBC). (2)

2. A quantum operation Φ can never increase mutual information i.e.,

S(ρA : Φ(ρB)) ≤ S(ρA : ρB). (3)

(b) Suppose Alice has a classical source, characterized by a random variable X,
which takes values x ∈ J = {1, 2, . . . , N} with probabilities p(x). She encodes the symbol
x into a quantum state ρx and sends it to Bob. Bob does a measurement on it, described by
a finite set of POVM elements {Ey}. Let Y be the classical random variable corresponding
to the outcome of the measurement.

(i) Describe how you can use three quantum systems to describe the above
procedure. Let these systems be denoted as A, Q and B. What is the initial state
ρAQB of the composite system AQB? Let A′, Q′ and B′ denote the systems after Bob’s
measurement. What is the final state ρA′Q′B′ ?

(ii) Using the results proved in part (a), prove that

S(A′ : B′) ≤ S(A : Q). (4)

(iii) Prove that (4) is the Holevo bound, clearly quoting any other result that you
use.
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