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1 The Dirac equation is

(i γµ∂µ −m)ψ(x) = 0

where the gamma matrices are given in the chiral representation by

γ0 =
(

0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
.

Here σi are the Pauli matrices and 12 is the unit 2× 2 matrix.

a. Show that these matrices satisfy the Clifford algebra

{γ µ, γ ν} = 2 η µ ν 14

where η µ ν is the Minkowski metric with signature (+1, -1, -1, -1) and 14 is the unit 4× 4
matrix.

b. Let Mµ ν = −Mν µ be the generators of the Lorentz group. They satisfy the
Lie algebra

[Mρ σ,Mτ ν ] = η σ τMρ ν − η ρ τMσ ν + η ρ νMσ τ − η σ νMρ τ .

Explain how to use the Clifford algebra to construct a representation of this Lie algebra,
and show that the generators do indeed satisfy the commutation relations.

c. A Lorentz transformation is given by

Λ = exp
(

1
2 Ωρ σMρ σ

)
.

Describe the action on the spinor field ψ(x). Explain why the spinor representation of
the Lorentz group cannot be unitary. Explain why this means that ψ†ψ is not a Lorentz
scalar. How can one construct a Lorentz scalar from a spinor?

d. The charge conjugate of a spinor is defined to be

ψ(c) = C ψ?

where C is a 4× 4 matrix satisfying

C†C = 1 , C† γµ C = − (γ µ)? .

Show that ψ(c) transforms in the same way as ψ under an infinitesimal Lorentz transfor-
mation. Show that if ψ satisfies the Dirac equation, then so does ψ(c).
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2 A free real scalar field φ of mass µ may be expanded in the Heisenberg picture as

φ(x) =
∫

d3p

(2π)3
1√
2E~p

(
a~p e

−ip·x + a†~p e
i p·x
)

where E~p =
√
~p · ~p+ µ2 . The creation and annihilation operators obey the commutation

relations
[a~p, a~q] = [a†~p, a

†
~q] = 0 and [a~p, a

†
~q] = (2π)3δ(3)(~p− ~q) .

a. Explain what is meant by the normal ordered product :φ(x)φ(y) : and the time
ordered product T (φ(x)φ(y)) .

The Feynman propagator is defined to be ∆F (x− y) = 〈0 |T (φ(x)φ(y)) | 0〉 , where
|0〉 is the vacuum state. Show that ∆F (x− y) has the integral representation

∆F (x− y) =
∫

d4p

(2π)4
i

p2 − µ2
e−ip·(x−y)

for a suitably chosen contour. Derive a relationship between the Feynman propagator and
the normal ordered and time ordered products.

The Lagrangian density for pseudoscalar Yukawa theory is given by

L = 1
2 (∂φ)2 − 1

2 µ
2φ2 + ψ̄ (i γµ ∂µ −m)ψ − λφ ψ̄ γ5ψ .

b. State the Feynman rules for the scalar propagator, the spinor propagator, and
the interaction vertex.

c. Draw the lowest order Feynman diagrams for ψψ → ψψ scattering and ψψ̄ → ψψ̄
scattering. Assign appropriate momentum and spin labels to the incoming and outgoing
states and, using Feynman rules or otherwise, write down the amplitude for these two
processes.

[ Useful Information: The Feynman rules state that to each incoming fermion
with momentum p and spin state r, you should associate the spinor ur(~p). For outgoing
fermions, associate ūr(~p). To each incoming anti-fermion with momentum p and spin state
r, associate a spinor v̄r(~p). For outgoing anti-fermions, associate vr(~p). ]
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3 a. The Lagrangian density for Maxwell theory is

L = − 1
4
Fµ ν F

µ ν

where Fµ ν = ∂µAν − ∂νAµ . Describe the gauge invariance of the theory. Derive the
equation of motion for Aν . Show that, with the choice of Lorentz gauge ∂µA

µ = 0 , the
equation of motion reduces to

(∂µ ∂µ)Aν = 0 .

b. Show that the equation of motion in Lorentz gauge follows from

L = − 1
4
Fµ ν F

µ ν − 1
2 (∂µAµ)2 .

Compute the momenta π µ conjugate to Aµ from this Lagrangian density.

c. The mode expansions for Aµ and π µ in the Schrödinger picture are given by

Aµ(~x) =
∫

d3p

(2π)3
1√
2 |~p |

3∑
λ=0

ελµ (~p)
[
aλ~p e

i~p·~x + aλ †~p e−i~p·~x
]

π µ(~x) =
∫

d3p

(2π)3

√
|~p|
2

(+i)
3∑

λ=0

(εµ)λ (~p)
[
aλ~p e

i~p·~x − aλ †~p e−i~p·~x
]

where ελµ (~p) are four 4-vectors, satisfying ελ · ελ′
= η λλ

′
and (εµ)λ(εν)λ

′
ηλλ′ = ηµν . The

creation and annihilation operators satisfy the commutation relations

[aλ~p , a
λ′ †
~q ] = − η λλ

′
(2π)3 δ(3)(~p− ~q) and [aλ~p , a

λ′

~q ] = [aλ†~p , aλ
′ †

~q ] = 0 .

Show that this implies canonical commutation relations for Aµ and πν .

d. The Lorentz invariant vacuum is defined by aλ~p | 0〉 = 0 . What is wrong with the
Hilbert space spanned by the one-particle states aλ †~p | 0〉? Explain how the Gupta-Bleuler
condition implements the Lorentz gauge condition ∂µA

µ = 0, and sketch how this can be
used to remove the difficulty with the states aλ †~p | 0〉 . Identify the states with longitudinal
polarization, and with transverse polarization.

4 Write an essay on symmetries in field theory. Your essay should: describe and prove
Noether’s theorem; provide illustrative examples of important symmetries in different field
theories and explain their physical significance; describe the difference between a gauge
symmetry and a global symmetry.
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