### MATHEMATICAL TRIPOS Part III

Friday 1 June 2007 9.00 to 12.00

## PAPER 50

## QUANTUM FIELD THEORY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# UNIVERSITY OF

2

**1** The Dirac equation is

$$(i\,\gamma^{\mu}\partial_{\mu}-m)\,\psi\,=\,0$$

where the gamma matrices are given in the chiral representation by,

$$\gamma^0 = \begin{pmatrix} 0 & 1_2 \\ 1_2 & 0 \end{pmatrix}$$
,  $\gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$ 

Here  $\sigma^i$  are the Pauli matrices and  $1_2$  is the unit  $2 \times 2$  matrix.

a) Show that these matrices satisfy the Clifford algebra

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2 \eta^{\mu\nu} 1_4$$

where  $\eta^{\mu\nu}$  is the Minkowski metric.

b) Show that the each component of the spinor  $\psi(x)$  satisfies the Klein-Gordon equation.

c) Consider the ansatz for plane-wave solutions,

$$\psi(x) = u(\vec{p}) e^{-ip \cdot x}$$

where  $p^2 = m^2$ . Show that this ansatz solves the Dirac equation when

$$u\left(\vec{p}\right) = \begin{pmatrix} \sqrt{p \cdot \sigma} \xi\\ \sqrt{p \cdot \bar{\sigma}} \xi \end{pmatrix}$$

for any 2-component spinor  $\xi$ , with  $\sigma^{\mu} = (1_2, \sigma^i)$  and  $\bar{\sigma}^{\mu} = (1_2, -\sigma^i)$ . Write down the ansatz for negative frequency solutions and solve it.

d) The action of a rotation  $\vec{\varphi}$  on the Dirac spinor is given by the matrix

$$S\left[\Lambda
ight] \,=\, egin{pmatrix} e^{iec{arphi}\cdotec{\sigma}/2} & 0 \ 0 & e^{iec{arphi}\cdotec{\sigma}/2} \end{pmatrix}$$

Write down the spinor  $u(\vec{p})$  describing a stationary particle of mass m with

- (i) Spin directed up along  $x^3$ .
- (ii) Spin directed up along  $x^1$ .

For each of these cases, write down the spinor corresponding to a massless particle travelling in the positive  $x^3$  direction.

**a**) A free real scalar field of mass  $\mu$  in the Heisenberg picture may be expanded as

$$\phi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \left( a_{\vec{p}} e^{-ip \cdot x} + a_{\vec{p}}^{\dagger} e^{+ip \cdot x} \right)$$

where  $E_{\vec{p}} = \sqrt{\vec{p} \cdot \vec{p} + \mu^2}$  and  $a_{\vec{p}}$  and  $a_{\vec{p}} t^{\dagger}$  satisfy the commutation relations

$$[a_{\vec{p}}, a_{\vec{q}}] = [a_{\vec{p}}^{\dagger}, a_{\vec{q}}^{\dagger}] = 0$$

and

$$[a_{\vec{p}}, a_{\vec{q}}^{\dagger}] = (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{q}).$$

Define the vacuum state  $|0\rangle$ . Show that the propagator  $\langle 0|\phi(x)\phi(y)|0\rangle$  is given by

$$\langle 0 | \phi(x) \phi(y) | 0 \rangle = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{2E_{\vec{p}}} e^{-ip \cdot (x-y)}.$$

b) The Feynman propagator for a real scalar field is defined to be

$$\Delta_F(x-y) = \langle 0 | T\phi(x) \phi(y) | 0 \rangle$$

where T stands for time ordering. Show that the propagator may be written as

$$\Delta_F(x-y) = \int \frac{d^4p}{(2\pi)^4} \, \frac{i \, e^{-ip \cdot (x-y)}}{p^2 - \mu^2 + i\epsilon} \, .$$

c) The Lagrangian for a real scalar field  $\phi$  interacting with a Dirac spinor  $\psi$  is given by

$$\mathcal{L} = \frac{1}{2} \,\partial_{\mu}\phi \,\partial^{\mu}\phi - \frac{1}{2} \,\mu^{2}\phi^{2} + \bar{\psi} \left(i \,\gamma^{\mu}\partial_{\mu} - m\right)\psi - \lambda\phi \,\bar{\psi} \,\psi$$

Draw the lowest order Feynman diagrams for  $\psi \psi \to \psi \psi$  scattering and  $\psi \bar{\psi} \to \psi \bar{\psi}$  scattering. In both cases, label the incoming particles with 4-momenta p and q, and label the outgoing particles with 4-momenta p' and q'.

d) Write down the amplitude for  $\psi\psi \to \psi\psi$  scattering at order  $\lambda^2$ , quoting any Feynman rules that you use.

[Useful Information: The Feynman rules state that to each incoming fermion with momentum p and spin r, you should associate the spinor  $u^r(\vec{p})$ . For outgoing fermions, associate  $\bar{u}^r(\vec{p})$ . To each incoming anti-fermion with momentum p and spin r, associate a spinor  $\bar{v}^r(\vec{p})$ . For outgoing anti-fermions, associate  $v^r(\vec{p})$ .]

Paper 50

**3** The Lagrangian for a scalar field  $\varphi$  of mass m and charge e, interacting with the electromagnetic field is

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \mathcal{D}_{\mu} \varphi^{\star} \mathcal{D}^{\mu} \varphi - m^2 |\varphi|^2$$

where  $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$  and  $\mathcal{D}_{\mu}\varphi = \partial_{\mu}\varphi + i e A_{\mu}\varphi$ .

**a** Show that this Lagrangian has a gauge symmetry.

**b** What is the physical difference between gauge symmetries and global symmetries? Justify your answer.

c The theory contains two interaction vertices with Feynman rules given by



where  $\eta_{\mu\nu}$  is the Minkowski metric. Identify the interaction terms in the Lagrangian corresponding to these two vertices.

**d**) When quantizing the theory in Coulomb gauge  $\nabla \cdot \vec{A} = 0$ , the naive photon propagator is

$$D_{\mu\nu}(p) = \begin{cases} \frac{i}{p^2 + i\epsilon} \left( \delta_{ij} - \frac{p_i p_j}{|\vec{p}|^2} \right) & \mu = i \neq 0, \ \nu = j \neq 0\\ \frac{i}{|\vec{p}|^2} & \mu, \nu = 0\\ 0 & otherwise \end{cases}$$

Draw the leading order diagrams for  $\varphi \bar{\varphi} \rightarrow \varphi \bar{\varphi}$  scattering and show that, when the external momenta are on-shell, the naive photon propagator may be replaced by the Lorentz invariant propagator

$$D_{\mu\nu}(p) = -i \frac{\eta_{\mu\nu}}{p^2}.$$

Paper 50

#### END OF PAPER