

MATHEMATICAL TRIPOS Part III

Thursday 1 June, 2006 9 to 12

PAPER 48

QUANTUM FIELD THEORY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

Consider a free field theory with scalar fields
$$\phi^k(k=1,2)$$
 and Lagrangian density

$$\mathcal{L}_{\rm free} = \frac{1}{2} \partial_{\mu} \phi^1 \partial^{\mu} \phi^1 + \frac{1}{2} \partial_{\mu} \phi^2 \partial^{\mu} \phi^2 - \frac{1}{2} m^2 \left((\phi^1)^2 + (\phi^2)^2 \right).$$

Show that there is an internal symmetry generated by the infinitesimal variations

$$\phi^1 \to \phi^1 + \alpha \phi^2, \quad \phi^2 \to \phi^2 - \alpha \phi^1.$$

Using Noether's theorem, or otherwise, find the conserved charge Q associated with this symmetry.

Assuming now that the field theory is canonically quantized, express Q in terms of the fields ϕ^k and the conjugate momenta π^k . Using the expansions

$$\begin{split} \phi^{k}(\boldsymbol{x}) &= \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\boldsymbol{p}}}} \left(a_{\boldsymbol{p}}^{k} + a_{-\boldsymbol{p}}^{k\dagger} \right) e^{i\boldsymbol{p}\cdot\boldsymbol{x}}, \\ \pi^{k}(\boldsymbol{x}) &= \int \frac{d^{3}p}{(2\pi)^{3}} (-i) \sqrt{\frac{E_{\boldsymbol{p}}}{2}} \left(a_{\boldsymbol{p}}^{k} - a_{-\boldsymbol{p}}^{k\dagger} \right) e^{i\boldsymbol{p}\cdot\boldsymbol{x}}, \end{split}$$

show that

$$Q = -i \int \frac{d^3 p}{(2\pi)^3} \left(a_{\mathbf{p}}^{2\dagger} a_{\mathbf{p}}^1 - a_{\mathbf{p}}^{1\dagger} a_{\mathbf{p}}^2 \right)$$

Find a one-particle state that is an eigenstate of Q, and determine the eigenvalue.

Suppose the interaction terms

$$\mathcal{L}_{\text{int}} = -\lambda \left(\phi^{1}\right)^{4} - 2\mu \left(\phi^{1}\right)^{2} \left(\phi^{2}\right)^{2} - \lambda \left(\phi^{2}\right)^{4}$$

are added to $\mathcal{L}_{\text{free}}$. What inequalities must λ and μ satisfy for there still to be a stable vacuum? For what values of λ and μ is Q still a conserved charge?

2 State the Feynman rules for particle scattering amplitudes in scalar ϕ^4 field theory, where the particles have rest mass m and the coupling constant is λ . Explain in outline how these rules are derived.

Draw a tree diagram (a diagram without loops) and a 1-loop diagram that contribute to the process where two incoming particles of 4-momenta p_1 and p_2 collide, and four outgoing particles of 4-momenta q_1 , q_2 , q_3 and q_4 are produced. What are the contributions to the scattering amplitude of these diagrams?

Suppose that one of the incoming particles has 3-momentum p and the other is at rest. What condition must p satisfy in order for it to be possible to have four outgoing particles?

Paper 48

3

3 Let Φ and ϕ be scalar Klein-Gordon fields, with Φ more than twice as massive as ϕ , and let the particles associated with these fields also be denoted by Φ and ϕ . Let ψ be a Dirac field of mass m.

Suppose the interaction terms in the Lagrangian density are

$$-G\overline{\psi}\psi\Phi - g\overline{\psi}\psi\phi$$

where G and g are real coupling constants. By considering the appropriate loop diagram, and Feynman rules, find the decay amplitude for $\Phi \rightarrow \phi + \phi$ to lowest order in G and g. Simplify as far as possible the traces of Dirac matrices that occur in your amplitude.

Suppose now that Φ is a pseudoscalar, rather than a scalar, and that the interaction terms are

$$iG\overline{\psi}\gamma^5\psi\Phi - g\overline{\psi}\psi\phi.$$

Find the field equation satisfied by ψ . By combining this with the equation satisfied by $\overline{\psi}$, determine the expression for the 4-divergence of the axial current $\overline{\psi}\gamma^{\mu}\gamma^{5}\psi$.

4 Write an essay on: Gauge invariance and its consequences in quantum electrodynamics.

END OF PAPER