MATHEMATICAL TRIPOS Part III

Monday 13 June, 2005 9 to 12

PAPER 12

PROBABILISTIC COMBINATORICS

Attempt FOUR questions.

There are **SIX** questions in total.

The questions carry equal weight.

In all questions you may assume without proof any form of the Chernoff bounds, including the following. If X is a sum of n independent indicator random variables with $\mathbb{E}(X) = \mu$ and 0 < c < 1, then

 $\mathbb{P}(|X-\mu| \ge c\mu) \le 2e^{-c^2\mu/3}.$

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 Let E_1, \ldots, E_n be events. State and prove the Jordan-Bonferroni inequalities for the probability that exactly k of the events E_i hold.

Deduce that if X is a random variable taking non-negative integer values, and $\mathbb{E}_r(X)r^k/r! \to 0$ as $r \to \infty$, then

$$\mathbb{P}(X=k) = \frac{1}{k!} \sum_{r=0}^{\infty} (-1)^r \mathbb{E}_{k+r}(X)/r!.$$

For each $r \ge 1$, give an example of a random variable X taking non-negative integer values such that $\mathbb{E}_r(X)$ is finite but $\mathbb{E}_{r+1}(X)$ is infinite.

2 Let *H* be a fixed strictly balanced graph with *v* vertices, *e* edges, and *a* automorphisms. Writing $X_H(G)$ for the number of subgraphs of *G* isomorphic to *H*, show that if $p = cn^{-v/e}$ with *c* constant, then $X_H(G(n,p)) \stackrel{d}{\to} \operatorname{Po}(c^e/a)$. (You may assume that if $\lim_{n\to\infty} \mathbb{E}_r(X_n) = \lambda^r$ for all $r \geq 1$, then $X_n \stackrel{d}{\to} \operatorname{Po}(\lambda)$.)

Let K_4^+ be the five-vertex graph obtained by adding an edge to K_4 . Is K_4^+ strictly balanced? Show that if $p = cn^{-2/3}$ with c constant, then

$$\lim_{n \to \infty} \mathbb{P}\left(k - \varepsilon < \frac{X_{K_4^+}(G(n, p))}{4cn^{1/3}} < k + \varepsilon\right) = \frac{(c^6/24)^k}{k!} e^{-c^6/24}$$

for any integer $k \ge 0$ and any $0 < \varepsilon < 1$.

3 For $k \ge 2$ fixed, let $G'_{k-\text{out}}$ be the random directed graph on $[n] = \{1, 2, \ldots, n\}$, n > k, obtained as follows: for each vertex i, choose a set S_i of k vertices from $[n] \setminus \{i\}$, with each of the $\binom{n-1}{k}$ possible choices equally likely. For different i, the S_i are taken to be independent. In $G'_{k-\text{out}}$ there is an edge from i to j if and only if $j \in S_i$. Let $G_{k-\text{out}}$ be the simple (undirected) graph underlying $G'_{k-\text{out}}$, so there is an edge ij in $G_{k-\text{out}}$ if and only if $j \in S_i$, $i \in S_j$, or both.

(a) Show that

 $\mathbb{P}(G_{2-\text{out}} \text{ is connected}) \to 1 \text{ as } n \to \infty.$

(b) Deduce that for any fixed $k \ge 2$,

 $\mathbb{P}(G_{k-\text{out}} \text{ is connected}) \to 1 \text{ as } n \to \infty.$

Paper 12

4 When is a sequence X_0, \ldots, X_n of random variables a martingale? State and prove the Hoeffding-Azuma inequality for a martingale X_0, \ldots, X_n for which $|X_i - X_{i-1}| \le c_i$ always holds.

Let $0 be constant. Show that for any <math>\varepsilon > 0$

$$(1-\varepsilon)\frac{n}{2\log_{1/q} n} \le \chi(G(n,p)) \le (1+\varepsilon)\frac{n}{2\log_{1/q} n}$$

holds with probability 1 - o(1) as $n \to \infty$, where $\chi(G)$ is the chromatic number of G, and q = 1 - p. (You may assume any correct bounds on $\mathbb{E}(X_k)$ and $\mathbb{E}(Y_k)$, where X_k is the number of k-cliques in G(n, p) and Y_k is the number of ordered pairs of k-cliques sharing at least one edge.)

5 Let Λ be an l by l matrix with non-negative entries λ_{ij} . The branching process $B_i(\Lambda)$, $1 \leq i \leq l$, is defined as follows: start with a single particle of type i in generation 0. Each particle of type i has for each j a Poisson number of children of type j, with mean λ_{ij} . The numbers of children of different types of a given particle are independent, as are the children of different particles. Let p_i be the probability that $|B_i(\Lambda)| = \infty$.

(a) Show that the vector $\mathbf{p} = (p_1, \dots, p_l)$ is the pointwise maximum non-negative solution to

$$p_i = 1 - e^{-\sum_{j=1}^l \lambda_{ij} p_j},$$

i.e., show that **p** is a solution, and that if **p'** is another non-negative solution, then $p_i \ge p'_i$ for every *i*.

- (b) What is the expected size of the t^{th} generation of $B_i(\Lambda)$?
- (c) State and prove a necessary and sufficient condition on Λ for $\sum_i p_i$ to be positive.

(You may wish to use the following fact: if M is a matrix with non-negative entries, then the largest eigenvalue λ of M is equal to the maximum $\alpha \geq 0$ such that there is a non-zero vector \mathbf{v} with non-negative entries v_i for which $(M\mathbf{v})_i \geq \alpha v_i$ for every i.) 4

6 Let $G_n = G_n^{(1)}$ be the scale-free LCD graph on *n* vertices with 2n edges. Give the definition of G_t in terms of G_{t-1} .

(a) Give the standard alternative description of G_n in terms of random variables $R_1, \ldots, R_n, L_1, \ldots, L_n \in [0, 1]$, and show that it is equivalent.

(b) Show that for any fixed x > 0, $\mathbb{P}(R_1 \ge x/\sqrt{n}) \to e^{-x^2}$ as $n \to \infty$.

(c) Let $d_1(n)$ be the degree of vertex 1 in G_n . Show that for any fixed y > 0,

$$\mathbb{P}(d_1(n) \ge y\sqrt{n}) \to e^{-y^2/8}$$

as $n \to \infty$.

(Hint: first show that for some $\varepsilon(n) \to 0$, for example $\varepsilon(n) = 1/\log n$, the event that $(1 - \varepsilon(n))\sqrt{\frac{i}{2n}} \le R_i \le (1 + \varepsilon(n))\sqrt{\frac{i}{2n}}$ holds for all $i \ge n^{1/10}$ has probability 1 - o(1).)

END OF PAPER