PAPER 11

PROBABILISTIC COMBINATORICS

Answer THREE questions. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) Let $k \geq 2$ and $g \geq 3$ be integers. Prove that there exists a graph of chromatic number at least k and girth at least g.
(ii) Let $0<p<1$ be fixed. Prove that the chromatic number of a random graph $G(n, p)$ satisfies

$$
\frac{n}{2 \log _{b} n} \leq \chi(G(n, p)) \leq \frac{n}{\log _{b} n}(1+o(1))
$$

almost surely, where $b=1 /(1-p)$.

2 State and prove the Harris-Kleitman correlation inequality.
State and prove Janson's concentration inequality.
Outline how Janson's inequality can be used to estimate accurately the chromatic number of a random graph.
$3 \quad$ Let $c>0$ be fixed and let $p=p(n), \mu=\mu(n)$ satisfy $\binom{n-1}{2} p^{3}=\mu$ and $e^{-\mu}=c / n$. Let T be the number of vertices in a random graph $G(n, p)$ not lying in any triangle. Show that T is asymptotically Poisson with parameter c.

4 Let A_{1}, \ldots, A_{n} be finite probability spaces and let $\Omega=\prod_{i=1}^{n} A_{i}$. Given $x \in \Omega$ and $A \subset \Omega$, the Talagrand distance $d_{T}(x, A)$ is defined as usual by

$$
d_{T}(x, A)=\min \left\{t: \forall \alpha \in \mathbb{R}^{n} \text { with }\|\alpha\|_{2}=1, \exists y \in A \text { with } \sum_{x_{i} \neq y_{i}} \alpha_{i} \leq t\right\}
$$

and the event $\overline{A_{t}}$ is defined by $\overline{A_{t}}=\left\{x \in \Omega: d_{T}(x, A)>t\right\}$.
Prove that $\operatorname{Pr}(A) \operatorname{Pr}\left(\overline{A_{t}}\right) \leq e^{-t^{2} / 4}$ for all $t \geq 0$.

5 Let $\delta>0$. Prove that there exists $\gamma=\gamma(\delta)>0$ and $\Delta_{0}=\Delta_{0}(\delta)$ with the following property: if H is a graph with maximum degree $\Delta \geq \Delta_{0}$, such that $e(H[\Gamma(v)]) \leq(1-\delta)\binom{\Delta}{2}$ for every vertex $v \in H$, then $\chi(H) \leq(1-\gamma) \Delta$.

Indicate briefly both how it might be proved that if H is triangle-free then $\chi(H) \leq O(\Delta / \log \Delta)$, and also why this result is best possible.

