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Answer two questions.

1 The principal arteries in the brain are modelled as follows:
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In a normal subject, vessels B, C, D, E are identical, with characteristic admittance
Y , wave-speed c and length l. The junctions at the points L, M , N lead directly to
peripheral circulatory beds with resistance R; venous pressure may be taken to be zero.
The artery leading from the heart, vessel A, has characteristic admittance YA = 2Y and
wave-speed cA.

(i) Consider the response of the system to a single Fourier mode of the incident wave,
in vessel A, for which the pressure takes the form

p = PA exp[iω(t− x/cA)],

using standard notation. Given that the pressure in vessel B, for example, can be
written

p = PBE− + PBRE+,

where E∓ = exp[iω(t ∓ x/c)], write down the corresponding flow-rate in vessel B.
Using a similar notation for vessels C, D, E and, in each finite vessel, letting x = 0
at the peripheral end of the vessel (e.g. x = 0 at N in vessel D, x = 0 at L in vessel
B, etc), show that the flow rate in the resistance starting from point N is QNeiωt,
where

QN = PARY 2 8e−iβ

[eiβ(2RY + 1)2 + e−iβ(2RY − 1)]
and β = ωl/c.

In the limit in which RY � 1, also calculate the flow-rate, QM , in the resistance
starting from M .

(ii) Now consider a subject in whom vessel C is obliterated by disease but nothing else
is changed. Repeat the calculation of QN and QM , in the limit RY � 1, and show
that |QN |, |QM | and |QL| are altered by factors

4 cos β

γ

4 cos(β/2)
γ cos β

4 cos 2β

γ cos β
,

respectively, where γ = |3e4iβ + e−2iβ |. Show that, for small β, all these values are greater
than 1. How do you explain the increase in overall flow rate amplitude?
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2 The following equations govern the flow of a fluid along a collapsible tube in which
the dimensionless cross-sectional area, cross-sectionally averaged velocity and pressure are
α(x, t), u(x, t) and p(x, t), respectively:

αt + (uα)x = 0 (1)

ut + uux = −px −R(α)u (2)

p− pe(x) = P̃ (α). (3)

(i) Explain the significance of each term in these equations, and how they have been
non-dimensionalised. What are the signs of P̃ ′(α) and R′(α)?

(ii) Find the condition that must be satisfied by pe(x) to permit steady flow with flow
rate Q and uniform cross-sectional area α0.

(iii) For a tube in which R(α) ∝ α−n(n > 0), consider small perturbations to the steady
flow of (ii) in which α = α0 + α′ where α′ = Aei(kx−ωt) for real wave number k.
Find the dispersion relation satisfied by ω, and show that ω is real if Q/α0 = c0/n,
where c2

0 = α0P̃
′(α0).

(iv) By considering a case in which
Q

α0
=

co

n
(1 + δ), |δ| � 1,

or otherwise, show that the flow is unstable when Q/α0 > c0/n. Show also that
the growth rate of the disturbance is approximately

δRok
2c2

0

2 (k2c2
0 + R2

0/4),

where R0 = R(α0), when 0 < δ � 1.

(v) Consider peristaltic pumping in the same tube, neglecting all fluid inertia, so that
the left-hand side of equation (2) is set to zero. The external pressure is now
prescribed to be

pe(x, t) = εPe sin kX where X = x− ct and ε� 1.

Seek a solution in which α, u and p are functions only of X, showing first that

u = c + Q/α

for some constant Q. Then expand in powers of ε, so that

α = α0 + εα1(X) + ε2α2(X) + . . .

and
Q = Q0 + εQ1 + ε2Q2 + . . .

Show that Q0 = −α0c, Q1 = 0 and

Q2 =
c(n + 1)

2α0
P 2

e

1

P̃
′2
0 +

(
R0c
kα0

)2 ,

where
P̃ ′

0 = P̃ ′(α0).
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3 Steady plane Poiseuille flow of average velocity Û exists far upstream in an indented
rigid channel whose upstream width is a. Write the dimensional Cartesian coordinates
and velocity components as (λax, ay) and (Ûu, Ûυ/λ) respectively, so x, y, u, υ are
dimensionless. The wall y = 1 is planar. The other wall is planar (y = 0) for x < 0.
For x > 0 it is indented to y = εF (x), where F (x) is prescribed. The Reynolds number
R = aÛ/ν (ν = kinematic viscosity) is large.

Write down the dimensionless Navier-Stokes equations and boundary conditions.
Show, under suitable conditions on λ and ε, to be explained, (a) that the perturbation to
the oncoming flow can be analysed in an inviscid core and viscous boundary layers; (b)
that, in the core,

u = U0(y) + εA(x)U ′
0(y) + O(ε2)

v = −εA′(x)U0(y) + O(ε2)

where U0(y) = 6y(1 − y) and A(x) is an unknown function; and (c) that the boundary
layers on the walls are both governed by problems of the following form:

Ux + Vz = 0
UUx + V Uz = −P ′(x) + Uzz

U = V = 0 on z = 0
U ∼ 6[z + H(x)] as z →∞

where U , V , z are u, v, y suitably rescaled, H(x) is a function which must be specified
for each boundary layer, and P is the rescaled pressure, which is the same in the two
boundary layers.

Show that, if the boundary layer problem has a unique solution, then A = − 1
2F .

For the case in which F (x) = bx1/3 for some constant b, show that the boundary-
layer problem has a similarity solution, in which

A(x) = āxα, P (x) = p̄xσ, U(x, z) = xβGη(η),

where η = zx−γ and α, β, γ, σ are constants which should be found, provided that p̄ is
such that the following boundary value problem has a solution:

Gηηη +
2
3
GGηη −

1
3
G2

η =
2
3
p̄

G(0) = Gη(0) = 0, Gη(η) ∼ 6η + 3b as η →∞.
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4 A rigid cylindrical tube of radius a is lined by a thin layer of liquid of undisturbed
thickness h0 � a, viscosity µ and surface tension σ. The difference between the pressure
in the central air core and that in the liquid layer is σ(1/R1 + 1/R2), where R1 and R2

are the radii of curvature of the interface in the longitudinal and the transverse planes.
Gravity is negligible.

(i) Assuming that σ = σ0, a constant, use lubrication theory to analyse the stability
of the layer to small axisymmetric perturbations in its thickness of the form
h = h0+h1e

βt+ikx, h1 � h0, and show that the interface is unstable to disturbances
of wave-number k such that 0 < k2 < 1/a2. Show too that the most rapidly-growing
disturbance has growth-rate

βmax =
σ0h

3
0

12µa4
. (1)

(ii) Now suppose that the interface contains insoluble surfactant molecules of concen-
tration Γ, such that

σ = σ0 −AΓ

where σ0 and A are positive constants. The diffusion of surfactant along the
interface can be neglected so its transport is entirely by advection. Repeat the
analysis of part (i), with h = h0 and Γ = Γ0 in the undisturbed state. Show that
the growth-rate β of disturbances is given by

β2 + βk2a2
[
λ

(
k2a2 − 1

)
+ α

]
+

αλ

4
k4a4

(
k2a2 − 1

)
= 0,

where

λ =
h3

0 (σ0 −AΓ0)
3µa4

, α =
h0AΓ0

µa2
.

Deduce that

(a) the interface is unstable for 0 < k2a2 < 1;

(b) for α
λ � 1, the maximum growth rate is reduced from the value given by (1), with

σ0 replaced by σ0 −AΓ0, to

βmax =
λ

4
− 3α

8
;

(c) for λ
α � 1, the maximum growth rate is given by βmax ≈ λ

16 , one-quarter the value
in the absence of surfactant.

(d) Explain physically why the presence of surfactant reduces the growth-rate of
disturbances.
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