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PHYSIOLOGICAL FLUID DYNAMICS

Attempt TWO questions.

There are four questions in total.

The questions carry equal weight.

Candidates may use their lecture notes, any material handed out during the course and examples classes,
and any hand-written or typed notes, taken from sources outside the lectures,

which they have prepared themselves.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Measurements of pressure and flow-rate wave forms at fixed sites in arteries show
that, within a single cardiac cycle, the time t1 at which the pressure is maximum is
later than the time t2 at which the flow rate is maximum. Conventional measurements
at peripheral sites show that the time difference t1 − t2 decreases with increasing age.
However, recent measurements in the ascending aorta indicate that t1 − t2 increases with
age.

You are invited to seek to explain all the above findings by modelling the propa-
gation of the pulse wave and its reflection at the aortic bifurcation, which is known to be
a site at which the net cross-sectional area of the vessels decreases. It is also known that
arteries become stiffer with age, but the geometry of the aortic bifurcation is relatively
unaffected by age. Be explicit about all assumptions and approximations in your model.

[Hint: it is suggested that the peripherally-travelling part of the pulse wave in the
aorta is modelled as a cosine wave, in which the pressure is

p = PI cos [ω (t− x/c1)] ,

where x, t are longitudinal coordinate and time, PI is a constant amplitude, ω is angular
frequency and c1 is wave speed.]
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2 A collapsible tube of finite length L rests on a rigid planar surface inclined at an
angle θ to the horizontal. The tube elasticity is described by a tube law in which the
internal pressure is given by

p = P0 +
1
2
ρc2

0A
2/A2

0,

where P0 is a constant pressure, ρ is fluid density, A is the tube’s cross-sectional area,
A0 is a constant area and c0 is a constant speed. When fluid flows steadily downhill the
viscous resistance can be represented by a term −ρR0R(A/A0)Au in the one-dimensional
momentum equation, where R0 is constant and R(α) is a dimensionless function such that
dR/dα < 0, and u is the fluid velocity along the tube.

Fluid enters the tube at x = 0 with flow rate c0A0q and the cross-sectional area is
A0α1.

(a) Show that this represents a stable, steady-state solution of the governing equations
as long as both

qR (α1) = β (defined byβ =
g sin θ

c0A0R0
)

and
α1 < q1/2.

Explain the significance of this inequality.

(b) At the downstream end of the tube, x = L, the cross-sectional area is A0α3 where
α3 > q1/2. Explain how this can normally be achieved through the occurrence
of an elastic jump at some position xs, such that 0 6 xs 6 L. For the case in
which R(α) ≡ α−γ(γ > 0) and β > q1−γ/2, show, by analysing both the jump
conditions (neglecting gravity and viscous resistance in the jump itself) and the
flow downstream of the jump, that the value of xs can in principle be determined
by solving the following three equations:

αγ
1 = q/β

α3
2 + α1α

2
2 + α2

1α2 −
3q2

α1
= 0∫ α3

α2

α4 − q2

α3 − (q/β)α3−γ
dα =

g sin θ

c2
0

(L− xs) .

(c) Hence show that, in the limit β →∞ with q = O(1), and for the case γ = 2

2g sin θ

c2
0

(L− xs) ≈ α2
3 − 32/3qβ1/3,

provided that the right hand side is positive and less than gL sin θ/c2
0.
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3 Fully-developed steady flow along an annular channel of width ĥ has a velocity
profile

û = Ûu0(y), 0 6 y 6 1,

where the radial coordinate is r̂ = ĥ(R+y), and in which the magnitudes of the shear-rate
on the two walls are different, i.e.

u′0(0) = γ0, u′0(1) = −γ1, γ0 > γ1 > 0
and u0(0) = u0(1) = 0. Here Û is a velocity scale, and R, γ0, γ1 are dimensionless
constants. Do NOT calculate u0(y) explicitly.

Axisymmetric perturbations to this flow can be analysed in the same way as for a
planar channel, apart from the fact that the continuity equation is ûx̂ + 1

r̂ (r̂υ̂)r̂ = 0 where
(x̂, r̂) are cylindrical polar coordinates with corresponding velocity components (û, υ̂), and
the viscous terms are also modified.

The inner wall of the channel, y = 0, is subjected to a time-dependent indentation,
y = εF (x, t),

where F (x, t) = 0 for x 6 0 and x > 1, x = x̂/λh, t = ωt̂ (t̂ is dimensional time), ω is
characteristic frequency and λ, ε are dimensionless quantities such that

λ� 1, ε� 1.

The Reynolds number is Re = Û ĥ/ν � 1; the Strouhal number is St = ωĥ/Û � 1.

(i) Explain carefully the relative orders of magnitude of the parameters ε, λ,Re, St
that

(a) permit the flow to be analysed as an inviscid core with two boundary layers
on the walls, of dimensionless thickness δ � ε; and

(b) allow the dimensionless longitudinal velocity in the core to be written as

u = u0(y) + ε
A(x, t)
R + y

u′0(y) + ε2u2(x, y, t) + . . . .

Show that A(x, t) satisfies the following partial differential equation, as long
as the boundary layer thickness remains of O(δ) everywhere:

σAxxx − βα1At − α2AAx = βγ0Ft + γ2
0FFx +

γ2
0

R
(AF )x, (∗)

where

β = λStε−1, σ = λ−2ε−1

∫ 1

0

u2
0(y)

R + y
dy, α1 =

γ0

R
+

γ1

R + 1
, α2 =

γ2
0

R2
− γ2

1

(R + 1)2
.

(ii) Deduce that small amplitude (linear) sinusoidal waves can propagate downstream
(and not upstream), with group velocity equal to three times the phase velocity.

For regions in which F = 0, investigate nonlinear waves of permanent form,
given by A(ξ) where ξ = x + ct, and such that A and all its derivatives tend to zero
smoothly as ξ → ±∞. By integrating equation (*) twice in that case, show (for example
graphically) that such waves can propagate upstream (but not downstream), with A < 0
and |A|max = 3βα1c/α2.

[The above is a model of a cardiac assist device consisting of a balloon mounted
axisymmetrically on a catheter in the aorta, and inflated periodically.]
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4 A model for a red blood cell passing steadily down an otherwise plasma-filled cap-
illary consists of an axisymmetric elastic body of unstressed radius r0(x),−L 6 x 6 L,
where x is the longitudinal coordinate, surrounded by incompressible viscous fluid con-
tained in a rigid cylinder of radius a. Near x = 0, r0(x) is approximately parabolic:

r0(x) ≈ r00 −
1
2
κx2,

where κ > 0 and r00 may be assumed to be greater than a. The cell elasticity is modelled
linearly, so that the pressure in the lubricating film of fluid around the cell is given by

p = p0 + α[r0(x)− r(x)],

where p0, α are positive constants and r(x) is the actual cell radius. The “cell” moves in
the +x direction with speed U , and the pressure in the plasma behind the cell exceeds that
in front by ∆p. The goal is to find a relationship between ∆p and U , on the assumption
that inertia is negligible.

Taking axes fixed in the cell, use lubrication theory to analyse the flow in the
lubricating film, showing in particular that

dp

dx
= −6µU

h2
+

12µQ

h3
,

where h(x) is the film thickness, µ is the fluid viscosity and −2πaQ is the (unknown)
volume flow rate of fluid past the cell in the +x direction. Write down boundary conditions
at x = ±L. What further conditions must be imposed to complete the formulation of the
problem?

Setting h = (2Q/U)H and x =
(

2Q/U
κ

)1/2

X, show that the problem can be
reduced to:

dH

dx
+ λ

(
1

H2
− 1

H3

)
= X (1)

with

H(−L̃)−H(L̃) = Cλ

∫ L̃

−L̃

(
4

3H
− 1

H2

)
dX, (2)

where

C =
2Q

Ua
, λ =

6µU

ακ1/2(2Q/U)5/2
, L̃ = L

(
κ

2Q/U

)1/2

.

Then

a) express ∆p as a multiple of the left hand side of equation (2);

b) explain why self-consistency of the model requires C � 1;

c) seek a solution in the limit of small λ and large L̃, of the form

H = H0(x) + λH1(x) + . . . .

Show that
H0 =

1
2

(
b2 + X2

)
,
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where
1
b2
≈ 2

3
(1 + C) .

Deduce that

∆p ≈ 8π(2/3)1/2µU

aκ1/2(2Q/U)1/2

so that the dependence of ∆p on U can be obtained, finally, from a statement of
the relationship between p0 and the downstream pressure p(L).

[You will need the integrals∫ ∞

−∞

dX

(b2 + X2)n
=

anπ

b2n−1
, n = 1, 2, 3, where a1 = 1, a2 =

1
2
, a3 =

3
8
.

]
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