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1 (a) Find three terms of an asymptotic expansion for each root of the equation

εx3 + x2 + 2x+ 1 = 0

in the limit ε→ 0.

(b) The (Legendre) function Pn(x) is defined for x > 1 as

Pn(x) =
1
π

∫ π

0

[
x+

(
x2 − 1

)1/2
cos θ

]n
dθ .

In the limit n→∞ find leading order asymptotic approximations for (i) Pn(x) x > 1;
(ii) Pn(1).

Deduce that for x→ 1 there is a distinguished scaling

x = 1 + ν/nq

where q should be determined, and find, in the form of an integral, the leading order
asymptotic approximation for Pn(x) when n→∞ with ν fixed.

Verify that this result agrees in an appropriate sense with both (i) and (ii).

Find asymptotic approximations for P ′n(1) and P
′′

n (1) as n→∞ and give a sketch
of Pn(x) for large n.

[If you quote a standard result for the asymptotic approximation of an integral, a
brief derivation of the result should be given.]
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2 Explain briefly the class of problems to which it is appropriate to apply the method
of multiple scales.

Consider the Mathieu equation

ÿ +
(
ω2 + ε cos t

)
y = 0 , t > 0 ,

in which ω > 0 is a constant of order unity and ε � 1 is a constant. The aim of the
question is to determine the values of ω, if any, for which the equation has a growing
solution for t→∞.

(i) Suppose that ω = 1
2 + kε.

Use the method of multiple scales to find a general solution for y(t) that is valid for
times t = ord(ε−1). Deduce the range of values of k for which the equation has a growing
solution.

(ii) Now consider other values for ω and the task of determining solutions for y(t)
that are valid when t = ord(ε−2). Explain why the equation may have a growing solution if
ω = 1. Explain briefly why there is an interval of size ord(εp), where p should be specified,
containing this value of ω for which solutions of the equation can grow. Use multiple scales
to find this interval explicitly.

(iii) Generalise these results to suggest, without detailed calculation, all the values
of ω > 0 for which the equation has a growing solution as t→∞.

[You are not required to verify your answer in part (iii).]
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3 The function f(r, ε) satisfies the equation

frr +
3
2r
fr + εffr = 0 in r > 1 ,

where 0 < ε� 1. The function f(r, ε) also satisfies the boundary conditions

f = 0 at r = 1, and f → 1 as r →∞ .

For both r = ord(1) and r = ord(ε−1) obtain asymptotic expansions for f up to and
including O(ε) terms.

Hint. You may quote the general solution y(x) of(
x3/2exy′

)′
= E3/2(x) ≡

∫ ∞
x

t−3/2e−t dt ,

with y → 0 as x → ∞, as y(x) = βE3/2 + G(x), where β is an arbitrary constant and
G(x) is a function such that as x→ 0

y = β
(

2x−1/2 − 2
√
π + 2x1/2 +O(x3/2)

)
+
(

4 lnx+ µ+O(x1/2)
)
,

where µ is a constant.
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4 Rayleigh’s equation governing the linear inviscid instability of an unidirectional
flow (U(y), 0, 0), subject to a 2D disturbance with wavenumber k and complex wavespeed
c = cr + ici, is

(U − c)(φ′′ − k2φ)− U ′′φ = 0 ,

where (ũ, ṽ, 0) = (φ′,−ikφ, 0) and ikp̃ = −ik(U − c)ũ− U ′ṽ are the perturbation velocity
and pressure respectively. Assume boundary conditions ṽ = 0 on y = ±y0.

(a) Show that

d

dy

[
(U − c)2 dψ

dy

]
− k2 (U − c)2 ψ = 0 ,

where ψ ≡ φ/(U − c). Deduce that∫ y0

−y0
U
(
|ψ′|2 + k2|ψ|2

)
dy =

∫ y0

−y0
cr
(
|ψ′|2 + k2|ψ|2

)
dy ,

and hence that if ci 6= 0 the real part of c, i.e. cr, is bounded by the maximum and
minimum values of U(y), say Umax and Umin respectively. By considering∫ y0

−y0
(U − Umax)(U − Umin)

(
|ψ′|2 + k2|ψ|2

)
dy ,

or otherwise, deduce that(
cr − 1

2 (Umax + Umin)
)2 + c2i 6

(
1
2 (Umax − Umin)

)2
,

and give a graphical interpretation of this result in the c-plane.

(b) Suppose that y0 =∞ and

U(y) =
{

1− |y| if |y| 6 1 ,
0 if |y| > 1 ,

and assume that ṽ and p̃ are everywhere continuous. Show that the eigenvalue relation
for the mode with φ even (the so-called sinuous mode) is

2k2c2 + k(1− 2k − e−2k)c− (1− k − (1 + k)e−2k) = 0 ,

and that for the mode with φ odd (the so-called varicose mode) is

2kc− (1− e−2k) = 0 .

Briefly discuss whether there are unstable modes.
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