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1 (a) Find for ε→ 0 the leading order term of an asymptotic expansion for each root
of the equation

x3 − εx2 + 2ε3x + 2ε6 = 0.

Find also the first correction for the root of smallest magnitude.

(b) Find the first three terms of an asymptotic expansion for

f(x) =
∫ x

0

t−1/2e−tdt

when x→∞ with x real.

(c) Consider the function

g(x) =
∫ 1

0

log t eixt dt

in the limit x→∞ with x real. By using the steepest descent contour, or otherwise, find
the full asymptotic expansion for g(x).

[Watson’s lemma may be quoted without proof.∫∞
0

e−u log u du = −γ where γ is Euler ′s constant .
]

2 Find the exact solution of the equation (for t > 0)

ẍ + 2εẋ + x = 0 with x(0) = 0 and ẋ(0) = 1.

If ε→ 0, obtain from your solution:

(a) the Poincaré expansion y(ε, t) of x(t) with errors of order ε2;

(b) an asymptotic expansion z(ε, t) of x(t) with errors of order ε2 that remains valid
when εt = ord(1), but not when ε2t = ord(1).

Sketch graphs that illustrate the differences between y(ε, t) and z(ε, t) and between
z(ε, t) and x(t) for fixed ε > 0.

The displacement x(t) of a pendulum that suffers weak air resistance satisfies the
equation for t > 0

ẍ + ε|ẋ|ẋ + x = 0 with x(0) = 0 and ẋ(0) = 1.

For ε→ 0 use the method of multiple scales to find a leading order approximation for x(t)
valid for εt = ord(1).

Give sketches of your solution for both ε > 0 and the unphysical case ε < 0.
Comment on the range of validity in t and the size of the error term for both ε > 0 and
ε < 0.
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3 The function y(x) satisfies the equation

ε
d2y

dx2
+

(
1 +

2ε

x
− 2ε3

x2

)
dy

dx
+

2y

x
= 0 ,

where ε > 0, together with the boundary conditions

y(0) = γ and y(1) = ε3 ,

where γ is a constant.

If ε � 1 find the order one value of γ for which an asymptotic solution can be
found such that y(x) is no larger than order one for 0 6 x 6 1.

Briefly comment on whether the problem as posed specifies a unique solution.

Hints. Note that

yxx +
(

1 +
2
x

)
yx +

2y

x
=

1
x2

(
x2yx + x2y

)
x

,

and that the general solution to

yxx +
(

2
x
− 2

x2

)
yx = 0 ,

is

y = A exp

(
− 2

x

)
+ B ,

where A and B are constants.
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4 (a) Consider inviscid fluid flow between rigid walls at y = −1 and y = 1. Initially
the velocity profile is given by (U(y), 0, 0). Suppose now that the flow is perturbed so that

u = (U(y), 0, 0) + (u, v, w) .

Derive linearised governing equations for the velocity v and the vorticity η = ∂u
∂z −

∂w
∂x .

Suppose that the perturbations have a single Fourier component so that

(v, η) = (ṽ(y, t), η̃(y, t))exp(i(αx + βz)) ,

and let ṽ0(y) = ṽ(y, 0) and η̃0(y) = η̃(y, 0). If U = λy and α 6= 0, then by means of a
Laplace transform, or otherwise, find an integral expression for ṽ. Also find an an integral
expression for η̃ in terms of ṽ.

Consider separately the case when α = 0 and β 6= 0. Solve for η̃, and comment on
your result.

(b) Consider instead the inviscid flow, (U(y), 0, 0), of a stratified fluid with
density ρ(y). Again assume that there are rigid walls at y = −1 and y = 1. In the so-called
Boussinesq limit, it may be shown that the equation governing linear two-dimensional
perturbations to this flow profile and density profile is

(U − c)
(
D2 − α2

)
φ− U ′′φ +

J(y)φ
U − c

= 0 ,

where D = d
dy , U ′′ = d2U

dy2 ,

u = (U(y), 0, 0) +
(

dφ

dy
,−iαφ, 0

)
exp(iα(x− ct)) + . . . ,

and
J(y) = −1

ρ

dρ

dy
.

If H = (U − c)−
1
2 φ, show that

D((U − c)DH)−
(

α2(U − c) + 1
2U ′′ +

1
4U ′2 − J

U − c

)
H = 0 .

Hence deduce that if the flow is unstable, then somewhere in the flow

J < 1
4U ′2 .
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