PAPER 48

PERTURBATION METHODS

$\boldsymbol{A L L}$ questions may be attempted,
full marks may be obtained by substantially complete answers to $\boldsymbol{T} \boldsymbol{W O}$ questions
There are four questions in total
The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) The integral $I(\lambda)$ is defined by

$$
I(\lambda)=\int_{1}^{\infty} \frac{1}{x^{2}} \exp (-\lambda \exp (-x)) \mathrm{d} x .
$$

Find the asymptotic expansion for $I(\lambda)$ as $\lambda \rightarrow \infty$ correct to, and including, terms that are $\mathcal{O}\left((\ln \lambda)^{-2}\right)$.
(b) The integral $\mathcal{I}(\sigma)$ is defined by

$$
\mathcal{I}(\sigma)=\int_{0}^{2 \pi} \exp (-\sigma x(1-\cos x)) \mathrm{d} x .
$$

Find the the first two terms of the asymptotic expansion for $\mathcal{I}(\sigma)$ as $\sigma \rightarrow \infty$.

It may help to recall that

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} \exp (-t) \mathrm{d} t
$$

and that

$$
\int_{0}^{\infty} \ln (t) \exp (-t) \mathrm{d} t=-\gamma
$$

where γ is Euler's constant.

2 The function $g(s ; t, a, \sigma)$ is defined by

$$
g(s ; t, a, \sigma)=-\frac{1}{a} \mathrm{e}^{\mathrm{i} a s} \int_{0}^{\infty} \frac{x^{s+\sigma-1} \mathrm{e}^{-t x}}{\mathrm{i} a+\ln x} \mathrm{~d} x
$$

where $s \geq 0, t>0, a>0$ and $\sigma>0$. Let

$$
F(t, a, \sigma)=\operatorname{Im}(g(0 ; t, a, \sigma)) .
$$

(a) Show that

$$
|g(s ; t, a, \sigma)| \leq \frac{1}{a} \int_{0}^{\infty} \frac{x^{s+\sigma-1} \mathrm{e}^{-t x}}{\left(a^{2}+\ln ^{2} x\right)^{\frac{1}{2}}} \mathrm{~d} x
$$

Also, by considering $g_{s}(s ; t, a, \sigma)$ or otherwise, show that

$$
g(0 ; t, a, \sigma)=\frac{1}{a} \int_{0}^{s} \mathrm{e}^{\mathrm{i} a x} \frac{\Gamma(x+\sigma)}{t^{x+\sigma}} \mathrm{d} x+g(s ; t, a, \sigma) .
$$

(b) Using the above two results deduce that as $t \rightarrow \infty$

$$
F(t, a, \sigma) \sim t^{-\sigma} \sum_{n=0}^{\infty} \beta_{n}(\ln t)^{-n-1}
$$

where the $\beta_{n}(a, \sigma)$ for $n=0,1, \ldots$ are defined through the generating function

$$
\frac{\sin a x}{a} \Gamma(\sigma+x)=\sum_{n=0}^{\infty} \beta_{n} \frac{x^{n}}{n!} .
$$

(c) State the asymptotic behaviour as $t \rightarrow \infty$ of Ramanujan's function

$$
N(t)=\int_{0}^{\infty} \frac{\mathrm{e}^{-t x}}{x\left(\pi^{2}+\ln ^{2} x\right)} \mathrm{d} x
$$

After noting the range of parameter values for which $g(s ; t, a, \sigma)$ is defined, briefly justify your answer.

3 For $1 \leq x<\infty$, the function $y(x)$ satisfies the ordinary differential equation

$$
x^{2} y^{\prime \prime}-\left(1-\varepsilon\left(1+y^{\prime}\right)\right) x y^{\prime}-2 \varepsilon y=0,
$$

where $\varepsilon \ll 1$ is a small positive constant.
(a) If

$$
y(1)=1, \quad y^{\prime}(1)=1
$$

find the leading-order solution for $y(x)$ for $1 \leq x<\infty$.
(b) Suppose that instead

$$
y(1)=1, \quad y^{\prime}(1)=0 .
$$

Again find the leading-order solution for $y(x)$ for $1 \leq x<\infty$.

Hint. x might not always be the ideal variable.
$4 \quad$ For $t \geq 0$, the function $u(t)$ satisfies the ordinary differential equation

$$
\ddot{u}+4 \mathrm{e}^{-2 \varepsilon t} u=8 \mathrm{e}^{-2 t},
$$

where $\varepsilon \ll 1$ is a small positive constant. At $t=0, u$ satisfies the initial conditions

$$
u(0)=1, \quad u^{\prime}(0)=-1
$$

Find the WKB solution correct to $O(\varepsilon)$ that is valid for times such that $\varepsilon t=O(1)$.
Is the WKB solution found above valid if $\varepsilon \mathrm{e}^{\varepsilon t}=O(1)$? If not propose a rescaling about such times and derive, but do not solve, the governing equation for the leading-order solution, and give matching conditions.

