

MATHEMATICAL TRIPOS Part III

Monday 3 June 2002 1.30 to 3.30

PAPER 48

PERTURBATION METHODS

ALL questions may be attempted, full marks may be obtained by substantially complete answers to **TWO** questions

There are **four** questions in total The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 (a) The integral $I(\lambda)$ is defined by

$$I(\lambda) = \int_1^\infty \frac{1}{x^2} \exp\left(-\lambda \exp(-x)\right) \, \mathrm{d}x \, .$$

Find the asymptotic expansion for $I(\lambda)$ as $\lambda \to \infty$ correct to, and including, terms that are $\mathcal{O}((\ln \lambda)^{-2})$.

(b) The integral $\mathcal{I}(\sigma)$ is defined by

$$\mathcal{I}(\sigma) = \int_0^{2\pi} \exp\left(-\sigma x(1-\cos x)\right) \, \mathrm{d}x \, .$$

Find the first two terms of the asymptotic expansion for $\mathcal{I}(\sigma)$ as $\sigma \to \infty$.

It may help to recall that

$$\Gamma(x) = \int_0^\infty t^{x-1} \exp(-t) \,\mathrm{d}t \,,$$

and that

$$\int_0^\infty \ln(t) \exp(-t) \, \mathrm{d}t = -\gamma \,,$$

where γ is Euler's constant.

3

2 The function $g(s; t, a, \sigma)$ is defined by

$$g(s;t,a,\sigma) = -\frac{1}{a} e^{ias} \int_0^\infty \frac{x^{s+\sigma-1}e^{-tx}}{ia+\ln x} dx,$$

where $s \ge 0, t > 0, a > 0$ and $\sigma > 0$. Let

$$F(t, a, \sigma) = \operatorname{Im}(g(0; t, a, \sigma)).$$

(a) Show that

$$|g(s;t,a,\sigma)| \le \frac{1}{a} \int_0^\infty \frac{x^{s+\sigma-1} \mathrm{e}^{-tx}}{(a^2 + \ln^2 x)^{\frac{1}{2}}} \,\mathrm{d}x.$$

Also, by considering $g_s(s; t, a, \sigma)$ or otherwise, show that

$$g(0;t,a,\sigma) = \frac{1}{a} \int_0^s e^{iax} \frac{\Gamma(x+\sigma)}{t^{x+\sigma}} dx + g(s;t,a,\sigma) \,.$$

(b) Using the above two results deduce that as $t \to \infty$

$$F(t, a, \sigma) \sim t^{-\sigma} \sum_{n=0}^{\infty} \beta_n (\ln t)^{-n-1},$$

where the $\beta_n(a,\sigma)$ for $n=0,1,\ldots$ are defined through the generating function

$$\frac{\sin ax}{a} \Gamma(\sigma + x) = \sum_{n=0}^{\infty} \beta_n \frac{x^n}{n!} \,.$$

(c) State the asymptotic behaviour as $t \to \infty$ of Ramanujan's function

$$N(t) = \int_0^\infty \frac{e^{-tx}}{x(\pi^2 + \ln^2 x)} \, \mathrm{d}x \,.$$

After noting the range of parameter values for which $g(s; t, a, \sigma)$ is defined, briefly justify your answer.

Paper 48

[TURN OVER

4

3 For $1 \le x < \infty$, the function y(x) satisfies the ordinary differential equation

$$x^2 y'' - (1 - \varepsilon (1 + y')) xy' - 2\varepsilon y = 0,$$

where $\varepsilon \ll 1$ is a small positive constant.

(a) If

$$y(1) = 1, \qquad y'(1) = 1,$$

find the leading-order solution for y(x) for $1 \le x < \infty$.

(b) Suppose that instead

$$y(1) = 1$$
, $y'(1) = 0$.

Again find the leading-order solution for y(x) for $1 \le x < \infty$.

Hint. x might not always be the ideal variable.

4 For $t \ge 0$, the function u(t) satisfies the ordinary differential equation

$$\ddot{u} + 4\mathrm{e}^{-2\varepsilon t} \, u = 8\mathrm{e}^{-2t} \,,$$

where $\varepsilon \ll 1$ is a small positive constant. At t = 0, u satisfies the initial conditions

$$u(0) = 1$$
, $u'(0) = -1$.

Find the WKB solution correct to $O(\varepsilon)$ that is valid for times such that $\varepsilon t = O(1)$.

Is the WKB solution found above valid if $\varepsilon e^{\varepsilon t} = O(1)$? If not propose a rescaling about such times and derive, but do not solve, the governing equation for the leading-order solution, and give matching conditions.

Paper 48