PAPER 67

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Attempt THREE questions from Section A and attempt ONE question from Section B.
Each question from Section B carries twice the weight of a question from Section A.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Section A

1 The implicit midpoint rule for the ODE system $\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y}), t \geqslant 0, \mathbf{y}(0)=\mathbf{y}_{0}$, is

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}\left(t_{n}+\frac{1}{2} h, \frac{1}{2}\left(\mathbf{y}_{n}+\mathbf{y}_{n+1}\right)\right), \quad n \geqslant 0 .
$$

a. Formulate the implicit midpoint rule as a Runge-Kutta method and determine its order. Is the method A-stable?
b. Suppose that it is known that, for every initial condition \mathbf{y}_{0}, the solution of the ODE posesses the invariant $\mathbf{y}^{\top}(t) S \mathbf{y}(t) \equiv \mathbf{y}_{0}^{\top} S \mathbf{y}_{0}, t \geqslant 0$, where S is a given symmetric matrix. Prove that $\mathbf{y}_{n}^{\top} S \mathbf{y}_{n} \equiv \mathbf{y}_{0}^{\top} S \mathbf{y}_{0}, n \geqslant 0$.

2 Consider the two-step ODE method

$$
\mathbf{y}_{n+2}-\frac{4}{2+\alpha} \mathbf{y}_{n+1}+\frac{2-\alpha}{2+\alpha} \mathbf{y}_{n}=\frac{h}{2+\alpha}\left(\mathbf{f}_{n+2}+2 \alpha \mathbf{f}_{n+1}-\mathbf{f}_{n}\right),
$$

where $\mathbf{f}_{m}=\mathbf{f}\left(t_{m}, \mathbf{y}_{m}\right)$, while $\alpha \neq-2$ is a parameter.
a. Determine the range of α for which the method is convergent. For every such α compute the order of the method.
b. Prove that no α exists so that the method is both convergent and A -stable.

3 The diffusion equation

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(a(x) \frac{\partial u}{\partial x}\right)
$$

where a is a positive function, is given for $0 \leqslant x \leqslant 1, t \geqslant 0$, with initial conditions at $t=0$ and zero Dirichlet boundary conditions at $x=0,1$. It is solved by the fully-discretized finite difference method

$$
u_{m+1}^{n+1}=u_{m}^{n}+\mu\left[a_{m-1 / 2} u_{m-1}^{n}-\left(a_{m-1 / 2}+a_{m+1 / 2}\right) u_{m}^{n}+a_{m+1 / 2} u_{m+1}^{n}\right]
$$

where $\mu=\Delta t /(\Delta x)^{2}$ and $a_{\gamma}=a(\gamma \Delta x)$.
a. Derive the order of magnitude of the local error.
b. Determine the range of $\mu>0$ for which the method is stable for every function a such that $0<a_{-} \leqslant a(x) \leqslant a_{+}<\infty$.

4 The differential equation

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}, \quad-\infty<x, y<\infty, \quad t \geqslant 0
$$

specified with $L_{2}\left[\mathrm{R}^{2}\right]$ initial conditions at $t=0$, is solved by the finite difference two-step method

$$
u_{k, m}^{n+1}=\frac{\Delta t}{\Delta x}\left(u_{k+1, m}^{n}+u_{k, m+1}^{n}-u_{k-1, m}^{n}-u_{k, m-1}^{n}\right)+u_{k, m}^{n-1}
$$

where $u_{k, m}^{n} \approx u(k \Delta x, m \Delta x, n \Delta t)$.
a. Determine the range of Courant numbers $\Delta t / \Delta x$ for which the method is stable.
b. Determine the range of Courant numbers $\Delta t / \Delta x$ for which the method converges.

5 Consider the linear algebraic system of equations

$$
\begin{aligned}
-2 x_{1}+x_{2}+x_{n} & =b_{1}, \\
x_{k-1}-2 x_{k}+x_{k+1} & =b_{k}, \quad k=2,3, \ldots, n-1, \\
x_{1}+x_{n-1}-2 x_{n} & =b_{n},
\end{aligned}
$$

whose matrix is a circulant.
a. Write down explicitly the Jacobi and Gauss-Seidel iterative methods for this system.
b. Either prove or disprove the convergence of both iterative methods in the present case.

Section B

6 Write an essay on the design of finite-difference methods for the Poisson equation, inclusive of the Mehrstellenverfahren technique.
$7 \quad$ Write an essay on the multigrid method. You should provide a justification for the method, describe in detail the implementation of a V-cycle and comment upon the performance of the method.

