PAPER 60

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Attempt THREE questions from Section A and $\mathbf{O N E}$ question from Section B There are five questions in Section A and two in Section B
Each question in Section A carries half the weight of each question in Section B

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Section A

1 The Laplace operator ∇^{2} is discretised in the unit square by the following two finite-difference methods,
(i)

Here $\Delta x=1 /(m+1)$, while m is the number of internal grid points in each direction.
a. To each method there corresponds an $m^{2} \times m^{2}$ matrix A, say, of finite differences. Evaluate explicitly the eigenvalues of A for both methods.
b. The eigenvalues of A can be used to approximate the eigenvalues of ∇^{2} in the unit square, namely $-\left(k^{2}+l^{2}\right) \pi^{2}, k, l=1,2, \ldots$. How good is the approximation? Which method produces better estimate?

2 Prove that the highest order of a convergent s-step method for ODEs is $2[(s+2) / 2]$. [You may use the Dahlquist equivalence theorem, as long as you state it precisely.]

3 (a) Determine the conditions on \mathbf{c}, \mathbf{b} and A so that the Runge-Kutta method with the Butcher tableau

$$
\begin{array}{c|c}
\mathbf{c} & A \\
\hline & \mathbf{b}^{\top}
\end{array}
$$

is of order $p \geqslant 2$.
(b) Given the two-stage Runge-Kutta method with the Butcher tableau

$$
\begin{array}{c|cc}
c_{1} & \frac{1}{2} \frac{c_{1}\left(-c_{1}+2 c_{2}\right)}{c_{2}-c_{1}} & -\frac{1}{2} \frac{c_{1}^{2}}{c_{2}-c_{1}} \\
c_{2} & -\frac{1}{2} \frac{c_{2}^{2}}{c_{2}-c_{1}} & \frac{1}{2} \frac{c_{2}\left(-2 c_{1}+c_{2}\right)}{c_{2}-c_{1}} \\
\hline & \frac{c_{2}-\frac{1}{2}}{c_{2}-c_{1}} & \frac{1}{2}-c_{1} \\
c_{2}-c_{1}
\end{array}
$$

where $c_{1}, c_{2} \in[0,1], c_{1} \neq c_{2}$, verify that it is always of order $p \geqslant 2$ and identify all values of c_{1}, c_{2} such that the method is A -stable.

4 (a) Determine the order p of the Strang splitting

$$
E(t ; A, B):=\mathrm{e}^{\frac{1}{2} t A} \mathrm{e}^{t B} \mathrm{e}^{\frac{1}{2} t A}=\mathrm{e}^{t(A+B)}+O\left(t^{p+1}\right)
$$

(b) We solve the diffusion equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}, \quad t \geqslant 0, \quad x, y \in[0,1]
$$

with given initial conditions at $t=0$ and zero boundary conditions on the boundary of $[0,1]^{2}$ by the method

$$
U^{n+1}=E(\mu ; A, B) U^{n}
$$

where A and B are finite-difference matrices approximating the x and y derivatives, respectively, and μ is the Courant number. Prove that, for a natural choice of the matrices A and B, the method is stable.

5 (a) The finite-difference method

$$
u_{m}^{n+1}=(1-2 \mu)\left(u_{m}^{n}-u_{m+1}^{n}\right)+u_{m+1}^{n-1}, \quad \mu=\frac{\Delta t}{\Delta x}
$$

is used to solve numerically the advection equation $u_{t}=u_{x}$, with Dirichlet initial conditions given at $t=0$ for all $-\infty<x<\infty$. Find the order for general μ.
(b) Determine the range of μ that gives stability.

4

Section B

$6 \quad$ Write an essay on Gaussian elimination of sparse linear algebraic systems and its relationship with graphs of matrices.
$7 \quad$ Write an essay on stability analysis of finite-difference methods for partial differential equations of evolution. Explain the importance of stability and survey briefly, with simple examples, the main techniques of stability analysis.

