

MATHEMATICAL TRIPOS Part III

Tuesday 4 June 2002 9 to 12

PAPER 60

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Attempt **THREE** questions from Section A and **ONE** question from Section B There are **five** questions in Section A and **two** in Section B Each question in Section A carries half the weight of each question in Section B

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Section A

1 The Laplace operator ∇^2 is discretised in the unit square by the following two finite-difference methods,

Here $\Delta x = 1/(m+1)$, while m is the number of internal grid points in each direction.

a. To each method there corresponds an $m^2 \times m^2$ matrix A, say, of finite differences. Evaluate explicitly the eigenvalues of A for both methods.

b. The eigenvalues of A can be used to approximate the eigenvalues of ∇^2 in the unit square, namely $-(k^2 + l^2)\pi^2$, $k, l = 1, 2, \ldots$ How good is the approximation? Which method produces better estimate?

2 Prove that the highest order of a convergent *s*-step method for ODEs is 2[(s+2)/2]. [You may use the Dahlquist equivalence theorem, as long as you state it precisely.] UNIVERSITY OF

3

3 (a) Determine the conditions on **c**, **b** and *A* so that the Runge–Kutta method with the Butcher tableau

$$\begin{array}{c|c} \mathbf{c} & A \\ \hline & \mathbf{b}^\top \end{array}$$

is of order $p \ge 2$.

(b) Given the two-stage Runge–Kutta method with the Butcher tableau

.

$$\begin{array}{c|cccc} c_1 & \frac{1}{2} \frac{c_1(-c_1+2c_2)}{c_2-c_1} & -\frac{1}{2} \frac{c_1^2}{c_2-c_1} \\ \\ \hline c_2 & -\frac{1}{2} \frac{c_2^2}{c_2-c_1} & \frac{1}{2} \frac{c_2(-2c_1+c_2)}{c_2-c_1} \\ \\ \hline & \frac{c_2-\frac{1}{2}}{c_2-c_1} & \frac{\frac{1}{2}-c_1}{c_2-c_1} \end{array}$$

where $c_1, c_2 \in [0, 1]$, $c_1 \neq c_2$, verify that it is always of order $p \ge 2$ and identify all values of c_1, c_2 such that the method is A-stable.

4 (a) Determine the order p of the Strang splitting

$$E(t; A, B) := e^{\frac{1}{2}tA} e^{tB} e^{\frac{1}{2}tA} = e^{t(A+B)} + O(t^{p+1}).$$

(b) We solve the diffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}, \qquad t \ge 0, \quad x,y \in [0,1],$$

with given initial conditions at t=0 and zero boundary conditions on the boundary of $[0,1]^2$ by the method

$$U^{n+1} = E(\mu; A, B)U^n,$$

where A and B are finite-difference matrices approximating the x and y derivatives, respectively, and μ is the Courant number. Prove that, for a natural choice of the matrices A and B, the method is stable.

5 (a) The finite-difference method

$$u_m^{n+1} = (1-2\mu)(u_m^n - u_{m+1}^n) + u_{m+1}^{n-1}, \qquad \mu = \frac{\Delta t}{\Delta x},$$

is used to solve numerically the advection equation $u_t = u_x$, with Dirichlet initial conditions given at t = 0 for all $-\infty < x < \infty$. Find the order for general μ .

(b) Determine the range of μ that gives stability.

Paper 60

[TURN OVER

Section B

6 Write an essay on Gaussian elimination of sparse linear algebraic systems and its relationship with graphs of matrices.

7 Write an essay on stability analysis of finite-difference methods for partial differential equations of evolution. Explain the importance of stability and survey briefly, with simple examples, the main techniques of stability analysis.

Paper 60