PAPER 57

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Attempt THREE questions from Section A and attempt ONE question from Section B.
Each question from Section A carries the weight of 18 points and each question from Section B carries the weight of 36 points.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION A

$1 \quad$ Prove that any ν-stage Runge-Kutta method of order 2ν is necessarily A-stable. [You may use, without proof, properties of Padé approximants to the exponential.]

2 The parabolic equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\kappa u
$$

is given for $0 \leqslant x \leqslant 1, t \geqslant 0$, together with an initial condition at $t=0$ and zero boundary conditions at $x=0$ and $x=1$.
(a) Prove (by separation of variables or otherwise) that the exact solution of the equation tends to zero as $t \rightarrow \infty$ for every intial condition if and only if $\kappa<\pi^{2}$.
(b) The equation is semidiscretized into

$$
u_{m}^{\prime}=\frac{1}{(\Delta x)^{2}}\left(u_{m-1}-2 u_{m}+u_{m+1}\right)+\kappa u_{m}, \quad m=1,2, \ldots, M
$$

where $(M+1) \Delta x=1$. Find the necessary and sufficient condition on κ that ensures $\lim _{t \rightarrow \infty}(t)=0, m=1,2, \ldots, M$, for all possible initial conditions.
$3 \quad$ Given $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$, we let $\mathbf{g}(\mathbf{y}):=\mathbf{y}^{\prime \prime}=(\partial \mathbf{f}(\mathbf{y}) / \partial \mathbf{y}) \mathbf{f}(\mathbf{y})$. Determine the order of the two-step two-derivative method

$$
\mathbf{y}_{n+1}-\frac{7}{15} h \mathbf{f}\left(\mathbf{y}_{n+1}\right)+\frac{1}{15} h^{2} \mathbf{g}\left(\mathbf{y}_{n+1}\right)=\mathbf{y}_{n-1}+h\left(\frac{16}{15} \mathbf{f}\left(\mathbf{y}_{n}\right)+\frac{7}{15} \mathbf{f}\left(\mathbf{y}_{n-1}\right)\right)+\frac{1}{15} h^{2} \mathbf{g}\left(\mathbf{y}_{n-1}\right) .
$$

4
Prove that any positive-definite 9×9 matrix with the sparsity structure

$$
\left[\begin{array}{ccccccccc}
\times & 0 & \times & \times & 0 & 0 & \times & 0 & 0 \\
0 & \times & 0 & 0 & 0 & 0 & 0 & \times & 0 \\
\times & 0 & \times & 0 & 0 & 0 & 0 & 0 & 0 \\
\times & 0 & 0 & \times & \times & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \times & \times & 0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 & 0 & \times & \times & 0 & 0 \\
\times & 0 & 0 & 0 & 0 & \times & \times & 0 & \times \\
0 & \times & 0 & 0 & \times & 0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \times & 0 & \times
\end{array}\right]
$$

admits, after re-ordering, Guassian elimination without fill-in. Describe the procedure that yo uhave used in the proof and carefully state all relevant theorems.

5 The semi-discretization

$$
\begin{aligned}
u_{m}^{\prime} & =\frac{1}{\Delta x}\left(-\frac{3}{2} u_{m}+2 u_{m+1}-\frac{1}{2} u_{m+2}\right), \quad m=1,2, \ldots, M-2, \Delta x=\frac{1}{M}, \\
u_{M-1}^{\prime} & =\frac{1}{\Delta x}\left(-\frac{3}{2} u_{M-1}+2 u_{M}-\frac{1}{2} u_{1}\right), \\
u_{M}^{\prime} & =\frac{1}{\Delta x}\left(-\frac{3}{2} u_{M}+2 u_{1}-\frac{1}{2} u_{2}\right)
\end{aligned}
$$

approximates the solution of the advection equation $u_{t}=u_{x}$, given with intial conditions $u(x, 0)=\varphi(x), 0 \leqslant x \leqslant 1$, and periodic boundary conditions $u(0, t)=u(1, t) t \geqslant 0$. Prove that the method is stable. [Hint: You might formulate the problem in matrix form, $\mathbf{u}^{\prime}=\frac{1}{\Delta x} A \mathbf{u}$, say, and show that all eigenvectors of A are of the form $\left[1, \omega_{\ell}, \ldots, \omega_{\ell}^{M-1}\right]^{\top}$ for some complex numbers $\left\{\omega_{\ell}: \ell=1,2, \ldots, M\right\}$.]
$6 \quad$ Determine the range of the real parameter α such that the multistep method

$$
\begin{aligned}
& \mathbf{y}_{n+3}-(1+2 \alpha) \mathbf{y}_{n+2}+(1+2 \alpha) \mathbf{y}_{n+1}-\mathbf{y}_{n} \\
= & \frac{1}{6} h\left[(5+\alpha) \mathbf{f}\left(\mathbf{y}_{n+3}\right)-(4+8 \alpha) \mathbf{f}\left(\mathbf{y}_{n+2}+(11-5 \alpha) \mathbf{f}\left(\mathbf{y}_{n+1}\right)\right]\right.
\end{aligned}
$$

is convergent.
What is the order of the method for different values of α ? For which values of α is the method A-stable?

4

SECTION B

7 Write an essay on the connection between convergence, order and stability in the numerical solution of ordinary differential equations.

8 Describe in detail the fast Fourier transform and discuss its application to fast solution of the Poisson equation in a square.

9 Describe the Engquist-Osher method for a single, one dimensional, hyperbolic nonlinear conservation law

$$
u_{t}+\frac{\partial}{\partial x} f(u)=0 .
$$

Prove that it is stable, provided that f is convex, differentiable and possesses a unique stagnation (sonic) point.

