

MATHEMATICAL TRIPOS Part III

Friday 3 June, 2005 1.30 to 4.30

PAPER 78

NONLINEAR CONTINUUM MECHANICS

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{2}$

1 Prove the polar decomposition theorem, that any $n \times n$ matrix **F** with positive determinant can be decomposed so that $\mathbf{F} = \mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R}$, where **U** and **V** are symmetric with positive eigenvalues and **R** is proper orthogonal.

Define a strain measure \mathbf{E}^{f} associated with a function f, stating what properties f is required to have. Demonstrate that $\mathbf{E}^{(1)} = \mathbf{U} - \mathbf{I}$ is such a measure.

State what is meant by the stress measure \mathbf{T}^{f} conjugate to the strain measure \mathbf{E}^{f} . Express the "symmetric Biot" stress $\mathbf{T}^{(1)}$ conjugate to $\mathbf{E}^{(1)}$ in terms of the nominal stress \mathbf{P} . [You are reminded that the rate of working of stress per unit reference volume is $P_{Ii}\dot{F}_{iI}$.]

2 A long hollow cylinder which, when undeformed, has inner radius a_0 and outer radius b_0 , is composed of isotropic incompressible Green-elastic material with energy function $W(\lambda_1, \lambda_2, \lambda_3)$ per unit reference volume, where λ_r (r = 1, 2, 3) denote the principal stretches. The cylinder is subjected to a uniform axial stretch λ_z , and to uniform radial inflation so that the inner radius becomes a. This deformation is achieved by internal pressure p and resultant axial force N.

Employing the usual notation that $R \to r$ while $X_3 \to x_3 = \lambda_z X_3$, show that the circumferential stretch at radius R is

$$\lambda \equiv \frac{r}{R} = \left[1 + \frac{\lambda_z a^2 - a_0^2}{R^2}\right]^{1/2} \lambda_z^{-1/2}.$$

By equating the rate of working of the applied loads to the rate of increase of stored energy as a and λ_z are varied, show that

$$p(a,\lambda_z) = \lambda_z^{-1} \int_{a_0}^{b_0} \frac{\partial \hat{W}}{\partial \lambda} \frac{dR}{\lambda R},$$

where $\hat{W}(\lambda, \lambda_z) = W(1/(\lambda\lambda_z), \lambda, \lambda_z)$. Also give the corresponding formula for the axial load N.

For the particular energy function

$$W(\lambda_1, \lambda_2, \lambda_3) = \frac{1}{2}\mu_1(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3) - \frac{1}{2}\mu_2(\lambda_1^{-2} + \lambda_2^{-2} + \lambda_3^{-2} - 3),$$

show that

$$p(a,\lambda_z) = (\mu_1 \lambda_z^{-2} - \mu_2) \left\{ \lambda_z \ln(\lambda_a/\lambda_b) - \frac{1}{2} (\lambda_a^{-2} - \lambda_b^{-2}) \right\},\$$

where $\lambda_a = a/a_0$ and λ_b is the circumferential stretch at the outer surface $(R = b_0)$. [You may find it convenient to transform the variable of integration from R to λ .]

Paper 78

3 Derive, from global statements of the balance of linear momentum and energy, and the entropy inequality, all relative to the initial configuration, the equations

$$\begin{split} \rho_0 \ddot{x}_i &= P_{Ii,I} + \rho_0 g_i, \\ \rho_0 \dot{u} &= P_{Ii} \dot{F}_{iI} + \rho_0 r - q_{I,I}^0, \\ \rho_0 \dot{\eta} &= \frac{\rho_0 r - q_{I,I}^0}{\theta} + \frac{\theta_{,I} q_I^0}{\theta^2} + \gamma; \quad \gamma \geqslant 0 \end{split}$$

Here, mass density is ρ_0 , internal energy per unit mass is u, θ is temperature, η is entropy per unit mass, q_I^0 are components of the "nominal" heat flux vector, r is rate of heat supply per unit mass, g_i is body force per unit mass, P_{Ii} is nominal stress, $F_{iI} = \partial x_i / \partial X_I$ and all fields are assumed to be smooth.

Now suppose that the fields are smooth, except possibly across a surface which maps back to a surface S(t) in the reference configuration, which moves with normal velocity V in that configuration. Deduce from the linear momentum balance the jump condition

$$\rho_0 V[\dot{x}_i] = n_I^0[P_{Ii}],$$

where n_I^0 are the components of the normal to S(t). Give also the jump conditions corresponding to the energy balance and the entropy inequality. [You will probably be able to recognise what these should be, without the need to mirror in detail the argument given for the momentum balance.]

4

4 The Jaumann or co-rotational derivative of a second-order tensor \mathbf{T} is defined as

$$\frac{\mathcal{D}\mathbf{T}}{\mathcal{D}t} = \dot{\mathbf{T}} - \mathbf{W}\mathbf{T} + \mathbf{T}\mathbf{W},$$

where **W** is the material spin, $\mathbf{W} = (\mathbf{L} - \mathbf{L}^T)/2$ in the usual notation. Show that, if the rotation **Q** is such that $\dot{\mathbf{Q}}\mathbf{Q}^T = \mathbf{W}$, then

$$\frac{d}{dt}(\mathbf{Q}^T\mathbf{T}\mathbf{Q}) = \mathbf{Q}^T\frac{\mathcal{D}\mathbf{T}}{\mathcal{D}t}\mathbf{Q}.$$

The "co-rotational Jeffreys" constitutive relation for incompressible fluid is

$$\frac{\mathcal{D}\boldsymbol{\sigma}^d}{\mathcal{D}t} + \frac{1}{\tau}\boldsymbol{\sigma}^d = 2\mu_0 \frac{\mathcal{D}\mathbf{D}}{\mathcal{D}t} + \frac{2\mu_1}{\tau}\mathbf{D},$$

together with $\sigma_{ij} = \sigma_{ij}^d - p\delta_{ij}$, $D_{k,k} = 0$, where **D** is the strain-rate, $(\mathbf{L} + \mathbf{L}^T)/2$. Show that

$$\boldsymbol{\sigma}^{d}(t) = 2\mu_{0}\mathbf{D}(t) + \frac{2(\mu_{1} - \mu_{0})}{\tau} \int_{-\infty}^{t} e^{-(t - t')/\tau} \mathbf{Q}(t)\mathbf{Q}^{T}(t')\mathbf{D}(t')\mathbf{Q}(t')\mathbf{Q}^{T}(t) dt'.$$

For the simple shear deformation

$$\mathbf{F}(t) = \begin{pmatrix} 1 & \gamma(t) \\ 0 & 1 \end{pmatrix}$$

(the irrelevant 3-components being suppressed), show that this relation implies

$$\boldsymbol{\sigma}^{d}(t) = \mu_{0}\dot{\gamma}(t) \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} + \frac{(\mu_{1} - \mu_{0})}{\tau} \int_{-\infty}^{t} e^{-(t-t')/\tau} \dot{\gamma}(t') \begin{pmatrix} -\sin 2(\theta - \theta') & \cos 2(\theta - \theta')\\ \cos 2(\theta - \theta') & \sin 2(\theta - \theta') \end{pmatrix} dt',$$

where $\theta(t)$ denotes the angle between the fixed Eulerian frame and a frame rotating with angular speed $\dot{\gamma}(t)/2$, and the shorthand $\theta = \theta(t)$, $\theta' = \theta(t')$ has been employed.

In the special case that $\dot{\gamma}$ is constant for all time, show that

$$\sigma_{12}^d = \left(\frac{\mu_1 + \dot{\gamma}^2 \tau^2 \mu_0}{1 + \dot{\gamma}^2 \tau^2}\right) \dot{\gamma}$$

and find corresponding formulae for σ_{11}^d and σ_{22}^d . [*The result* $\int_0^\infty e^{-s/\tau} (\cos \dot{\gamma}s + i \sin \dot{\gamma}s) ds = \tau/(1 - i\dot{\gamma}\tau)$ can be used.]

Paper 78

5 (a) Fluid with constitutive relation

$$\sigma_{ij} = \frac{\partial \Omega(\mathbf{D})}{\partial D_{ij}},$$

where the function Ω is convex, occupies a domain \mathcal{D} with boundary S. It is subjected to body force with components ρg_i per unit volume. Components of velocity v_i are prescribed so that $v_i = v_i^0$ over a part S_v of the boundary, while components of traction, $\sigma_{ij}n_j = t_i^0$, are prescribed over the complementary part S_t . Assuming that the deformation is slow so that inertia can be ignored, show that the actual velocity field **v** minimises the functional

$$\mathcal{F}(\mathbf{v}') = \int_{\mathcal{D}} \left[\Omega(\mathbf{D}') - \rho g_i v_i' \right] dx - \int_{S_t} t_i^0 v_i' dS,$$

over fields \mathbf{v}' that satisfy the restriction $\mathbf{v}' = \mathbf{v}^0$ on S_v . [The property $\Omega(\mathbf{D}') - \Omega(\mathbf{D}) \ge (D'_{ij} - D_{ij})\partial\Omega(\mathbf{D})/\partial D_{ij}$ of the convex function Ω may be assumed.]

(b) This part concerns the limiting case of a Bingham fluid, for which

$$\Omega(\mathbf{D}) = \tau_0 \dot{\gamma} + \frac{1}{2} \mu_0 \dot{\gamma}^2,$$

where $\dot{\gamma} = (2D_{ij}D_{ij})^{1/2}$. The fluid is incompressible, so $D_{kk} = 0$ and the stress is determined only up to an unknown pressure. Show that, if $\dot{\gamma} > 0$,

$$\sigma_{ij}' = \frac{\partial \Omega}{\partial D_{ij}} = 2\left(\frac{\tau_0}{\dot{\gamma}} + \mu_0\right) D_{ij},$$

where σ'_{ij} is the deviatoric stress. State the restriction on σ'_{ij} when $\dot{\gamma} = 0$.

Flow between fixed plates, situated at $x_2 = \pm h$, is driven by a uniform pressure gradient G parallel to the x_1 -axis. Assuming that the only non-zero velocity component is v_1 and that this is an odd function of x_2 only, and that the stress component σ_{12} is continuous and an odd function of x_2 only, show that $\sigma_{12} = -Gx_2$, and hence that no flow is possible unless $G > \tau_0/h$. Find the velocity profile when this condition is met.

Paper 78

[TURN OVER

6

6 Non-hardening, rigid-perfectly plastic material is subjected to "antiplane" deformation so that the only non-zero component of velocity is v_3 and the only non-zero components of stress are σ_{13} , σ_{23} , all functions of (x_1, x_2) only. No body-force is applied. The material has yield condition (under such deformation)

$$f(\sigma_{13}, \sigma_{23}) = k$$

and it conforms to the associated flow law $\dot{\varepsilon}_{i3} = \dot{\lambda} \partial f / \partial \sigma_{i3}$, i = 1, 2.

By considering $d\sigma_{13}/ds$ along a curve defined by $x_1 = x_1(s)$, $x_2 = x_2(s)$, in conjunction with the relevant equation of equilibrium and the derivative with respect to x_2 of the yield criterion, show that σ_{13} is constant along the characteristic curve, defined so that $dx_1/ds = -\alpha \partial f/\partial \sigma_{23}$, $dx_2/ds = \alpha \partial f/\partial \sigma_{13}$. Show similarly that σ_{23} and v_3 are constant along any characteristic curve.

Apply this result to obtain the form of the solution close to the tip of a crack: the crack occupies $x_1 < 0$, $x_2 = 0$ and its surfaces are traction-free. The required field is a "centred fan", centred at the crack tip. Explain why it is bounded by a line that makes an angle ϕ_b with the x_1 -axis, where

$$\tan \phi_b = -\frac{\partial f/\partial \sigma_{23}}{\partial f/\partial \sigma_{13}}$$

evaluated where $\sigma_{23} = 0$.

In the special case

$$f(\sigma_{13}, \sigma_{23}) = \frac{\sigma_{13}^2}{A^2} + \frac{\sigma_{23}^2}{B^2} = 1,$$

show that, in the centred fan region,

$$\sigma_{13} = \frac{-A^2 \tan \phi}{(B^2 + A^2 \tan^2 \phi)^{1/2}}, \ \ \sigma_{23} = \frac{B^2}{(B^2 + A^2 \tan^2 \phi)^{1/2}},$$

where r, ϕ are polar coordinates based on the crack tip.

END OF PAPER

Paper 78