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1 Prove the polar decomposition theorem, that any n × n matrix F with positive
determinant can be decomposed so that F = RU = VR, where U and V are symmetric
with positive eigenvalues and R is proper orthogonal.

Define a strain measure Ef associated with a function f , stating what properties
f is required to have. Demonstrate that E(1) = U− I is such a measure.

State what is meant by the stress measure Tf conjugate to the strain measure
Ef . Express the “symmetric Biot” stress T(1) conjugate to E(1) in terms of the nominal
stress P. [You are reminded that the rate of working of stress per unit reference volume is
PIiḞiI .]

2 A long hollow cylinder which, when undeformed, has inner radius a0 and outer
radius b0, is composed of isotropic incompressible Green-elastic material with energy
function W (λ1, λ2, λ3) per unit reference volume, where λr (r = 1, 2, 3) denote the
principal stretches. The cylinder is subjected to a uniform axial stretch λz, and to uniform
radial inflation so that the inner radius becomes a. This deformation is achieved by internal
pressure p and resultant axial force N .

Employing the usual notation that R → r while X3 → x3 = λzX3, show that the
circumferential stretch at radius R is

λ ≡ r

R
=

[
1 +

λza
2 − a2

0

R2

]1/2

λ−1/2
z .

By equating the rate of working of the applied loads to the rate of increase of stored energy
as a and λz are varied, show that

p(a, λz) = λ−1
z

∫ b0

a0

∂Ŵ

∂λ

dR

λR
,

where Ŵ (λ, λz) = W (1/(λλz), λ, λz). Also give the corresponding formula for the axial
load N .

For the particular energy function

W (λ1, λ2, λ3) =
1
2
µ1(λ2

1 + λ2
2 + λ2

3 − 3)− 1
2
µ2(λ−2

1 + λ−2
2 + λ−2

3 − 3),

show that

p(a, λz) = (µ1λ
−2
z − µ2)

{
λz ln(λa/λb)−

1
2
(λ−2

a − λ−2
b )

}
,

where λa = a/a0 and λb is the circumferential stretch at the outer surface (R = b0). [You
may find it convenient to transform the variable of integration from R to λ.]
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3 Derive, from global statements of the balance of linear momentum and energy, and
the entropy inequality, all relative to the initial configuration, the equations

ρ0ẍi = PIi,I + ρ0gi,

ρ0u̇ = PIiḞiI + ρ0r − q0
I,I ,

ρ0η̇ =
ρ0r − q0

I,I

θ
+

θ,Iq
0
I

θ2
+ γ; γ > 0.

Here, mass density is ρ0, internal energy per unit mass is u, θ is temperature, η is entropy
per unit mass, q0

I are components of the “nominal” heat flux vector, r is rate of heat
supply per unit mass, gi is body force per unit mass, PIi is nominal stress, FiI = ∂xi/∂XI

and all fields are assumed to be smooth.

Now suppose that the fields are smooth, except possibly across a surface which
maps back to a surface S(t) in the reference configuration, which moves with normal
velocity V in that configuration. Deduce from the linear momentum balance the jump
condition

ρ0V [ẋi] = n0
I [PIi],

where n0
I are the components of the normal to S(t). Give also the jump conditions

corresponding to the energy balance and the entropy inequality. [You will probably be
able to recognise what these should be, without the need to mirror in detail the argument
given for the momentum balance.]
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4 The Jaumann or co-rotational derivative of a second-order tensor T is defined as

DT
Dt

= Ṫ−WT + TW,

where W is the material spin, W = (L− LT )/2 in the usual notation. Show that, if the
rotation Q is such that Q̇QT = W, then

d

dt
(QT TQ) = QT DT

Dt
Q.

The “co-rotational Jeffreys” constitutive relation for incompressible fluid is

Dσd

Dt
+

1
τ

σd = 2µ0
DD
Dt

+
2µ1

τ
D,

together with σij = σd
ij − pδij , Dk,k = 0, where D is the strain-rate, (L + LT )/2. Show

that

σd(t) = 2µ0D(t) +
2(µ1 − µ0)

τ

∫ t

−∞
e−(t−t′)/τQ(t)QT (t′)D(t′)Q(t′)QT (t) dt′.

For the simple shear deformation

F(t) =
(

1 γ(t)
0 1

)
(the irrelevant 3-components being suppressed), show that this relation implies

σd(t) = µ0γ̇(t)
(

0 1
1 0

)
+

(µ1 − µ0)
τ

∫ t

−∞
e−(t−t′)/τ γ̇(t′)

(
− sin 2(θ − θ′) cos 2(θ − θ′)
cos 2(θ − θ′) sin 2(θ − θ′)

)
dt′,

where θ(t) denotes the angle between the fixed Eulerian frame and a frame rotating with
angular speed γ̇(t)/2, and the shorthand θ = θ(t), θ′ = θ(t′) has been employed.

In the special case that γ̇ is constant for all time, show that

σd
12 =

(
µ1 + γ̇2τ2µ0

1 + γ̇2τ2

)
γ̇

and find corresponding formulae for σd
11 and σd

22.
[The result

∫∞
0

e−s/τ (cos γ̇s + i sin γ̇s)ds = τ/(1− iγ̇τ) can be used.]
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5 (a) Fluid with constitutive relation

σij =
∂Ω(D)
∂Dij

,

where the function Ω is convex, occupies a domain D with boundary S. It is subjected to
body force with components ρgi per unit volume. Components of velocity vi are prescribed
so that vi = v0

i over a part Sv of the boundary, while components of traction, σijnj = t0i ,
are prescribed over the complementary part St. Assuming that the deformation is slow so
that inertia can be ignored, show that the actual velocity field v minimises the functional

F(v′) =
∫
D

[Ω(D′)− ρgiv
′
i]dx−

∫
St

t0i v
′
idS,

over fields v′ that satisfy the restriction v′ = v0 on Sv. [The property Ω(D′) − Ω(D) >
(D′

ij −Dij)∂Ω(D)/∂Dij of the convex function Ω may be assumed.]

(b) This part concerns the limiting case of a Bingham fluid, for which

Ω(D) = τ0γ̇ +
1
2
µ0γ̇

2,

where γ̇ = (2DijDij)1/2. The fluid is incompressible, so Dkk = 0 and the stress is
determined only up to an unknown pressure. Show that, if γ̇ > 0,

σ′ij =
∂Ω

∂Dij
= 2

(
τ0

γ̇
+ µ0

)
Dij ,

where σ′ij is the deviatoric stress. State the restriction on σ′ij when γ̇ = 0.

Flow between fixed plates, situated at x2 = ±h, is driven by a uniform pressure
gradient G parallel to the x1-axis. Assuming that the only non-zero velocity component
is v1 and that this is an odd function of x2 only, and that the stress component σ12 is
continuous and an odd function of x2 only, show that σ12 = −Gx2, and hence that no
flow is possible unless G > τ0/h. Find the velocity profile when this condition is met.
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6 Non-hardening, rigid-perfectly plastic material is subjected to “antiplane” defor-
mation so that the only non-zero component of velocity is v3 and the only non-zero com-
ponents of stress are σ13, σ23, all functions of (x1, x2) only. No body-force is applied. The
material has yield condition (under such deformation)

f(σ13, σ23) = k,

and it conforms to the associated flow law ε̇i3 = λ̇∂f/∂σi3, i = 1, 2.

By considering dσ13/ds along a curve defined by x1 = x1(s), x2 = x2(s), in
conjunction with the relevant equation of equilibrium and the derivative with respect to
x2 of the yield criterion, show that σ13 is constant along the characteristic curve, defined
so that dx1/ds = −α∂f/∂σ23, dx2/ds = α∂f/∂σ13. Show similarly that σ23 and v3 are
constant along any characteristic curve.

Apply this result to obtain the form of the solution close to the tip of a crack: the
crack occupies x1 < 0, x2 = 0 and its surfaces are traction-free. The required field is a
“centred fan”, centred at the crack tip. Explain why it is bounded by a line that makes
an angle φb with the x1-axis, where

tanφb = −∂f/∂σ23

∂f/∂σ13
,

evaluated where σ23 = 0.

In the special case

f(σ13, σ23) =
σ2

13

A2
+

σ2
23

B2
= 1,

show that, in the centred fan region,

σ13 =
−A2 tanφ

(B2 + A2 tan2 φ)1/2
, σ23 =

B2

(B2 + A2 tan2 φ)1/2
,

where r, φ are polar coordinates based on the crack tip.
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