MATHEMATICAL TRIPOS Part III

Tuesday 5 June 2007 1.30 to 4.30

PAPER 6

NOETHERIAN ALGEBRAS

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 State and prove the non-commutative version of Hilbert's Basis Theorem.

Define a poly-(cyclic or finite) group. Stating clearly any results that you use in addition to the basis theorem, show that the group algebra $\mathbb{Z}G$ is Noetherian whenever G is a poly-(cyclic or finite) group.

2 Let R be a commutative ring and S a multiplicatively closed subset of R. Define the localisation R_S of R at S using its universal property and sketch the proof that it exists.

Explain what it means to localise R at a prime ideal P of R. Show that R_P , the localisation of R at P is always a local ring.

Suppose that R_P contains no non-trivial nilpotent element for each prime ideal P of R. Show that R contains no non-trivial nilpotent elements.

Suppose now that R_P is an integral domain for each prime ideal P. Must R be an integral domain? Justify your answer.

3 Show, using Zorn's Lemma, that every ring R has a simple left R-module.

Define the Jacobson radical J(R) of a ring R. Show that J(R) consists of all elements x in R such that 1 - axb is a unit in R for every a and b in R.

Suppose now that R is commutative and I is an ideal in R. Show that the set S = 1 + I is multiplicatively closed and that the localisation I_S of I is contained in $J(R_S)$.

4 State and prove the Artin–Wedderburn Theorem.

Deduce that if G is a finite group and S_1, \ldots, S_k are all the simple $\mathbb{C}G$ -modules up to isomorphism then

$$\sum_{i=1}^{k} (\dim_{\mathbb{C}} S_i)^2 = |G|.$$

You may assume that the Jacobson radical of $\mathbb{C}G$ is 0.

5 Define an almost commutative \mathbb{C} -algebra. Show that if R is an almost commutative \mathbb{C} -algebra then R is Noetherian. Deduce that if \mathfrak{g} is a finite dimensional \mathbb{C} -Lie algebra then the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ is Noetherian.

6 Let R be a left Noetherian ring and M a finitely generated left R-module. Show that M has a projective resolution consisting of finitely generated projective modules.

Deduce that if M has projective dimension $n < \infty$ then $\operatorname{Ext}_{R}^{n}(M, R) \neq 0$.

Find a ring R and an R-module M such that M does not have finite projective dimension as an R-module.

END OF PAPER