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1 Let Λ be a lattice in C, with basis {ω1, ω2}. Define the Weierstraß ℘-function associated
to Λ, and show that is an elliptic function with respect to Λ. [You may assume without proof
the convergence of the series

∑′ |ω|−σ for σ > 2.]

Compute the Laurent series of ℘(z) at the origin in terms of the constants

Gk(Λ) =
∑

06=ω∈Λ

1
ωk
.

Show that ℘(z) satisfies the differential equation

℘′(z)2 = 4
3∏
i=1

(℘(z)− ei)

where ei = ℘(ωi/2) and ω3 = −ω1 − ω2.

Prove that
℘′(z − 1

2ωi)
℘′(z)

= −

(
℘(1

4ωi)− ei
℘(z)− ei

)2

.

2 What is a modular form of weight k? Show that for k > 2 the holomorphic Eisenstein
series

Gk(τ) =
∑

(m,n) 6=(0,0)

1
(mτ + n)k

is a modular form of weight k with q-expansion

Gk(τ) = 2ζ(k)

1− 2k
Bk

∑
n≥1

σk−1(n)qn


where the Bernoulli numbers Bk are defined by the identity

t

et − 1
=
∞∑
k=0

Bk
tk

k!
.

Stating clearly any results you use, show that the Fourier coefficients τ(n) of the cusp form ∆
satisfy the congruence

τ(n) ≡ σ11(n) (mod 691)

[The equality B12 = −691/2730 may be useful.]

3 Write an essay on the theory of Hecke operators for modular forms on SL2(Z).
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4 The real analytic Eisenstein series is defined for Re(s) > 1, τ = x+ iy ∈ H as

E(τ, s) =
1
2

∑
(m,n)=1

ys

|mτ + n|2s
=

∑
γ∈Γ∞\Γ

(Im γ(τ))s

Let f , g ∈ Sk be cusp forms with q-expansions

f(τ) =
∑
n≥1

anq
n, g(τ) =

∑
n≥1

bnq
n.

Show that for Re(s) sufficiently large, the Dirichlet series

D(f, g, s) =
∑
n≥1

anbn
ns

can be computed in terms of the Rankin–Selberg integral

I(f, g, s) =
∫

Γ\H
f(τ)g(τ)E(τ, s)yk−2 dx dy.

Assuming any analytic results concerning E(τ, s) you need, show that D(f, g, s) can be
analytically continued to the half-plane {s | Re(s) > k}. Hence show that D(f, f, s) is
absolutely convergent for Re(s) > k, and deduce that the L-series L(f, s) converges absolutely
for Re(s) > (k + 1)/2.

[The inequality |an| ≤ max(nα, |an|2 /nα) may be useful.]

END OF PAPER
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