MATHEMATICAL TRIPOS Part III

Monday 11 June 2007 9.00 to 12.00

PAPER 3

MODULAR REPRESENTATIONS OF FINITE GROUPS

Attempt **THREE** questions.

There are **SIX** questions in total.

The questions carry equal weight.

In this paper G is a finite group. In the usual notation we are given a p-modular system (K, \mathfrak{O}, k) where p is a prime dividing |G|. Throughout $R \in \{\mathfrak{O}, k\}$.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** Define a *block* of RG both in terms of ideal direct summands and idempotents. Explain how the two definitions are equivalent. Explain what it means for an indecomposable RG-module to *lie in* a block. Describe how the blocks over k and over \mathfrak{O} are related.

Defining clearly any terms that you use, define the *defect group* and the *defect* of a block B. If B is a block with defect group D prove Green's result that every indecomposable RG-module in the block is projective relative to D. Finally, prove that if B is a block of kG and \hat{B} is the corresponding block of $\mathfrak{O}G$ then B and \hat{B} have the same defect groups.

2 State and prove Brauer's First Main Theorem (if you use any results in the proof you should state them clearly). If $DC_G(D) \leq H \leq G$ (but with no other restriction on H) and b is a p-block of kH, use the First Main Theorem to define the Brauer correspondent b^G of b. In this case prove that b^G may be characterised as the unique block B of kG such that $B \downarrow_{H \times H}$ has b as a direct summand viewed as a $k(H \times H)$ -module.

3 For a fixed *p*-subgroup D of G, state and prove the Green Correspondence between blocks of RG and blocks of certain subgroups of G related to D. If you use any lemma you should prove it.

Take R = k. Use the Mackey Decomposition and Maschke's Theorem to give a direct proof of the Green Correspondence in the situation where a Sylow *p*-subgroup D of G is a T.I. set, namely, D satisfies $D \cap {}^{g}D = 1$ or D for $g \in G$. Namely, prove that if M is an indecomposable non-projective $kN_G(D)$ -module then $M \uparrow^G$ has a unique non-projective indecomposable summand, i.e.

$$M\uparrow^G\cong M_0\oplus M_1\,,$$

where M_1 is projective and M_0 is non-projective. [Standard facts about projective modules may be assumed.]

4 State Nagao's version of Brauer's Second Main Theorem.

Use it to deduce that if B is a block with defect group D then there exists an indecomposable kG-module lying in B with vertex D and a trivial source.

Recall that a block B is said to be of *finite representation type* if there are only finitely many isomorphism classes of indecomposable modules in B. Deduce that if B is a block with defect group D, then B has finite representation type if and only if D is cyclic.

Classify the indecomposable modules for a cyclic group of order p in characteristic p. Find the unique composition series for each indecomposable module and identify the principal indecomposable module.

5 Define the *principal block* of kG. State and prove Brauer's Third Main Theorem.

Denote the maximal normal p-subgroup of G by $O_p(G)$, and the maximal normal p'-subgroup (i.e. of order coprime to p) by $O_{p'}(G)$. Let $H = G/O_{p'}(G)$. We say that G is p-constrained if $C_H(O_p(H)) \leq O_p(H)$. Let $x \in G$ be a p-element such that $O_{p'}(C_G(x)) = 1$ and $C_G(x)$ is p-constrained. Let B be a block of kG with defect group D. Use the Third Main Theorem to prove that x is G-congugate to an element of D if and only if B is the principal block of G.

6 Let *B* be a *p*-block of kG with cyclic defect group *D* of order p^n $(n \ge 1)$. Define the *inertial index e* of *B*. Assume that *k* is algebraically closed. Stating clearly any results you use, show that there are *e* simple modules in *B* and $p^n e$ indecomposable modules in *B*.

Let k be an algebraically closed field of characteristic 2. Suppose that B is a block of kG whose defect group is a Klein four group $\mathbb{Z}_2 \times \mathbb{Z}_2$. Use the Extended First Main Theorem to show that e = 1 or 3. If e = 1 and D is normal in G prove that B is a complete matrix algebra $\operatorname{Mat}_n(kD)$ of some degree n. You should state clearly any results that you use. [HINT: it may be useful to consider separately the cases when D is central in G and when D is normal but not central in G.]

END OF PAPER