PAPER 24

MODULAR FORMS

Attempt FOUR questions.

There are five questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Define the spaces M_{k}, S_{k} of modular and cusp forms of weight k for the modular group $S L_{2}(\mathbb{Z})$. Show that multiplication by $\Delta=\left(E_{4}^{3}-E_{6}^{2}\right) / 1728$ is an isomorphism between M_{k} and S_{k+12}, and obtain the dimension formula for even $k \geq 0$:

$$
\operatorname{dim} M_{k}= \begin{cases}{\left[\frac{k}{12}\right]} & \text { if } k \equiv 2(\bmod 12) \\ {\left[\frac{k}{12}+1\right]} & \text { otherwise }\end{cases}
$$

Show also that every modular form on $S L_{2}(\mathbb{Z})$ can be expressed as a polynomial in E_{4} and E_{6}.
[You may assume the formula

$$
\sum_{\tau \neq i, \rho} v_{\tau}(f)+\frac{1}{2} v_{i}(f)+\frac{1}{3} v_{\rho}(f)+v_{\infty}(f)=\frac{k}{12}
$$

for non-zero $f \in M_{k}$.]
ii) Show that if $E_{4} \Delta=\sum_{n \geq 1} c_{n} q^{n}$ then $c_{n} \equiv \sigma_{15}(n)(\bmod 3617)$.
[The q-expansion of E_{16} is $1+\frac{255}{8 \times 3617} \sum_{n=1}^{\infty} \sigma_{15}(n) q^{n}$.]

2 Write an account of the theory of Hecke operators for modular forms on $S L_{2}(\mathbb{Z})$.

3 (i) Let $g(\tau)=\sum_{n \geq 1} b_{n} q^{n}$ where $\left|b_{n}\right| \ll n^{\sigma}$ for some $\sigma \in \mathbb{R}$. Show that the Dirichlet series $L(g, s)=\sum_{n \geq 1} b_{n} n^{-s}$ satisfies the Mellin transform formula

$$
(2 \pi)^{-s} \Gamma(s) L(g, s)=\int_{0}^{\infty} g(i y) y^{s} \frac{d y}{y}
$$

for $\operatorname{Re}(s)$ sufficiently large.
(ii) Let $f \in S_{k}\left(S L_{2}(\mathbb{Z})\right)$ and $N \geq 1, a, d$ integers with $a d \equiv 1(\bmod N)$. By considering a suitable matrix $\left(\begin{array}{cc}a & b \\ N & d\end{array}\right) \in S L_{2}(\mathbb{Z})$, show that

$$
f\left(\frac{-1}{N^{2} \tau}+\frac{a}{N}\right)=(N \tau)^{k} f\left(\tau-\frac{d}{N}\right)
$$

(iii) Suppose further that f has Fourier expansion $\sum_{n \geq 1} c_{n} q^{n}$. By considering the Mellin transform of $g(\tau)=f(a / N+\tau)$, show that the function

$$
M(f, a / N, s)=\left(\frac{N}{2 \pi}\right)^{s} \Gamma(s) \sum_{n=1}^{\infty} e^{2 \pi i a n / N} c_{n} n^{-s}
$$

has the integral representation

$$
M(f, a / N, s)=\int_{1 / N}^{\infty}\left(f\left(\frac{a}{N}+i y\right)(N y)^{s}+(-1)^{k / 2} f\left(\frac{-d}{N}+i y\right)(N y)^{k-s}\right) \frac{d y}{y}
$$

and deduce that $M(f, a / N, s)$ has an analytic continuation to \mathbb{C} which satisfies the functional equation

$$
M(f, a / N, k-s)=(-1)^{k / 2} M(f,-d / N, s) .
$$

4 (i) State and prove the Poisson summation formula, and use it to show that the theta function

$$
\vartheta_{00}(z, \tau)=\sum_{n=-\infty}^{\infty} q^{n^{2} / 2} t^{n} \quad\left(q=e^{2 \pi i \tau}, t=e^{2 \pi i z}\right)
$$

satisfies

$$
\vartheta_{00}(z / \tau,-1 / \tau)=\left(\frac{\tau}{i}\right)^{1 / 2} e^{\pi i z^{2} / \tau} \vartheta_{00}(z, \tau)
$$

(ii) Show that

$$
\frac{\vartheta_{00}(z, \tau) \vartheta_{01}(z, \tau) \vartheta_{10}(z, \tau) \vartheta_{11}(z, \tau)}{\vartheta_{11}(2 z, \tau)}=\frac{1}{2} \quad \vartheta_{00}(0, \tau) \vartheta_{01}(0, \tau) \vartheta_{10}(0, \tau)
$$

where $\vartheta_{\alpha \beta}(z, \tau)=i^{\alpha \beta} q^{\alpha / 8} t^{\alpha / 2} \vartheta_{00}\left(z+\frac{\alpha \tau+\beta}{2}, \tau\right)$.
[The transformation formula for $\vartheta_{\alpha \beta}$ is

$$
\left.(-1)^{\alpha} \vartheta_{\alpha \beta}(z+1, \tau)=\vartheta_{\alpha \beta}(z, \tau)=(-1)^{\beta} q^{1 / 2} t \vartheta_{\alpha \beta}(z+\tau, \tau) .\right]
$$

5 i) What does it mean to say that a function on the upper half plane is modular of weight k on a subgroup $\Gamma \subset S L_{2}(\mathbb{Z})$? Show that if $f(\tau)$ is modular of weight k on $S L_{2}(\mathbb{Z})$ then for any positive integer $N, f(N \tau)$ is modular of weight k on

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

ii) Let $E_{2}(\tau)=1-24 \sum_{n \geq 1} \sigma_{1}(n) q^{n}$. Show that

$$
E_{2}(-1 / \tau)=\tau^{2} E_{2}(\tau)+\frac{6 \tau}{\pi i}
$$

Deduce that $E_{2}^{*}(\tau)=E_{2}(\tau)-\frac{3}{\pi y}$ is modular of weight 2 on $S L_{2}(\mathbb{Z})$, where $y=\operatorname{Im}(\tau)$.
[You may assume that Δ has the product expansion $\Delta(\tau)=q \prod\left(1-q^{n}\right)^{24}$, and that $P S L_{2}(\mathbb{Z})$ is generated by the transformations $\tau \mapsto \tau+1, \tau \mapsto-1 / \tau$.]
iii) Let $N>1$ and $c(M) \in \mathbb{C}$ be given for each $M \mid N$. Show that

$$
\sum_{M \mid N} c(M) E_{2}(M \tau)
$$

is modular of weight 2 on $\Gamma_{0}(N)$ if and only if $\sum M^{-1} c(M)=0$.

