PAPER 26

MODULAR FORMS

Attempt THREE questions
There are six questions in total
The questions carry equal weight
M_{k} (resp. S_{k}) denotes the space of modular forms (resp. cusp forms) of weight k on $S L_{2}(Z)$.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 For every $k \geqslant 2$, express the Eisenstein series

$$
G_{2 k}(\tau)=\sum_{m, n}^{\prime}(m \tau+n)^{-2 k} \quad(\tau \in \mathcal{H})
$$

and its normalized version $E_{2 k}(\tau)$ as a power series in $q=e^{2 \pi i \tau}$. Show that

$$
G_{2 k}(\tau)=\sum_{4 a+6 b=2 k} c_{a, b}^{(k)} G_{4}^{a} G_{6}^{b}
$$

for some $c_{a, b}^{(k)} \in \mathbf{Q}$. Express E_{8}, E_{10}, E_{14} in terms of E_{4}, E_{6}.

2 Let

$$
D=\frac{1}{2 \pi i} \frac{d}{d \tau}=q \frac{d}{d q} \quad\left(\tau \in \mathcal{H}, q=e^{2 \pi i \tau}\right)
$$

Show that
(i) If $f \in M_{k}, g \in M_{\ell}$, then $\ell g D f-k f D g \in S_{k+\ell+2}$.
(ii) If $f \in M_{k}$, then $\left(D-\frac{k}{12} E_{2}\right) f \in M_{k+2}$ where $E_{2}(\tau)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}$.
(iii) The coefficients $\tau(n)$ of

$$
q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

satisfy

$$
(1-n) \tau(n)=24 \sum_{k=1}^{n-1} \sigma_{1}(k) \tau(n-k)
$$

and

$$
\tau(n) \equiv n \sigma_{5}(n) \quad(\bmod 5)
$$

3 Let $\chi:(\mathbf{Z} / N \mathbf{Z})^{*} \longrightarrow \mathbf{C}^{*}$ be a primitive Dirichlet character with $N>1$. Let

$$
\theta_{\chi}(\tau)=\sum_{\substack{n \in \mathbf{Z} \\(n, N)=1}} \chi(n) e^{\pi i n^{2} \tau}
$$

and

$$
\tilde{\theta}_{\chi}(\tau)=\sum_{\substack{n \in \mathbf{Z} \\(n, N)=1}} \chi(n) n e^{\pi i n^{2} \tau}
$$

State and prove a relation between $\theta_{\chi}(\tau)$ and $\theta_{\bar{\chi}}\left(-1 / N^{2} \tau\right)$ when $\chi(-1)=1$, and between $\widetilde{\theta}_{\chi}(\tau)$ and $\widetilde{\theta}_{\bar{\chi}}\left(-1 / N^{2} \tau\right)$ when $\chi(-1)=-1$. Deduce that

$$
\begin{aligned}
\prod_{n=1}^{\infty}\left(1-q^{n}\right) & =\sum_{n \in \mathbf{Z}}(-1)^{n} q^{(3 n+1) n / 2} \\
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{3} & =\sum_{n=0}^{\infty}(-1)^{n}(2 n+1) q^{n(n+1) / 2}
\end{aligned}
$$

4 Write an account of the theory of Hecke operators acting on M_{k}.

5 Let $f(\tau)=\sum_{n=0}^{\infty} a_{n} q^{n} \in M_{k}$. State and prove the meromorphic continuation and functional equation for $(2 \pi)^{-s} \Gamma(s) L(f, s)$, where

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

$6 \quad$ Let $z=x+i y \in \mathcal{H}$ and $\operatorname{Re}(s)>1$. Develop the function

$$
E(z, s)=\frac{1}{2} \pi^{-s} \Gamma(s) \sum_{m, n}^{\prime} \frac{y^{s}}{|m z+n|^{2 s}}
$$

into Fourier expansion in terms of the function

$$
K_{s}(Y)=\frac{1}{2} \int_{0}^{\infty} e^{-Y\left(t+t^{-1}\right) / 2} t^{s} \frac{d t}{t}
$$

Deduce: either the meromorphic continuation and functional equation of $E(z, s)$;
or Kronecker's limit formula.

