PAPER 46

MIXING AND TRANSPORT

Candidates may attempt $\boldsymbol{A} \boldsymbol{L L}$ questions. All questions carry equal weight.
A distinction mark will be awarded for complete, well-reasoned answers to two questions.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) A particle moves in one dimension under the influence of a stationary random velocity field $v(t)$, with ensemble average $\langle v(t)\rangle=0$ at each t.

Let $X(t)$ be the position of the particle at time t. Derive an expression for $\left\langle(X(t)-X(0))^{2}\right\rangle$ in terms of the velocity autocorrelation function
$\rho(t)=\langle v(0) v(t)\rangle /\langle v(0) v(0)\rangle$. Under what conditions is this expression consistent with diffusive behaviour as $t \rightarrow \infty$? Comment on the case $\rho(t)=(1+|t|)^{-\alpha}$ for different values of the positive constant α.
(ii) An infinite channel $-\infty<x<\infty,-\frac{1}{2} L<y<\frac{1}{2} L$ contains an oscillating shear flow $u=U \cos \omega t \sin \frac{\pi y}{L}$ where ω, U and L are constants. Advection by this shear flow and diffusion (with constant diffusivity κ) act on a tracer with concentration $\chi(x, y, t)$. The channel walls are insulating, with $\partial \chi / \partial y=0$ on $y= \pm \frac{1}{2} L$.
Assume that, at $t=0, \chi=1$ for $-\frac{1}{2} L<x<\frac{1}{2} L,-\frac{1}{2} L<y<\frac{1}{2} L$ and $\chi=0$ elsewhere.

Consider the evolution of the tracer for $t>0$ by constructing partial differential equations in y and t for the moments $[\chi],[x \chi]$ and $\left[x^{2} \chi\right]$, where $[]=.\int_{-\infty}^{\infty}() d$.$x .$

Show that at large times $\left[x^{2} \chi\right]$ increases linearly with time at rate $2 K t[\chi]$, where the constant K is to be determined as a function of U, ω, L and κ. Explain carefully any assumptions that you make.

Comment on the regime where $\omega L^{2} / \kappa$ is small.

2 A simple two-dimensional shear flow in the x-direction is defined by

$$
(u, v)=(\Lambda y, 0)
$$

where Λ is a constant.
Consider the action of this flow on an infinitesimal line element which is oriented in the direction $(\cos \theta, \sin \theta)$ at time $t=0$. What is the orientation of the line element at a later time $t=T$ and by what factor has its length increased?

A 'renovating' shear flow has the form of the above shear flow in each interval $n T<t<(n+1) T$, where n is an integer, except that the direction of the flow changes randomly from one interval to the next. (The direction of the flow in the interval $n T<t<(n+1) T$ may be assumed to be independent of the flow at any previous times $t<n T$.
λ_{N} is the stretching factor for a given line element over the time $0<t<N T$. What is the average stretching rate per unit time $\mu=\left\langle\log \lambda_{N}\right\rangle / N T$, expressed as Λ multiplied by a function of ΛT ? The averaging operator \langle.$\rangle is to be taken over all initial orientations$ of the line element and all realisations of the subsequent flow. Justify carefully the steps in your calculation.

Describe the behaviour of μ as a function of ΛT. Show that there is a finite value of ΛT for which μ is a maximum. Explain your results including the behaviour for small and large ΛT, and the presence of a maximum, in qualitative terms.

What can you say about the probability distribution of λ_{N} for large N ? Give as many quantitative details as you can about the distribution in the limit $\Lambda T \ll 1$.
[You may find the following results useful:

$$
\begin{gathered}
\int_{0}^{2 \pi} \log (1+\beta \cos \psi) d \psi=2 \pi \log \left(\frac{1+\sqrt{1-\beta^{2}}}{2}\right) \text { for }-1<\beta<1 \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{4} \theta d \theta=\frac{3}{8} \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{4} \theta \cos ^{2} \theta d \theta=\frac{1}{16} \\
\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{4} \theta \cos ^{4} \theta d \theta=\frac{3}{128}\right]
\end{gathered}
$$

3
Consider two-dimensional time-periodic flow defined by the streamfunction

$$
\psi(\mathbf{x}, t)=\psi_{0}(x, y)+\epsilon \psi_{1}(x, y, t)=-\sin x \sin y+\epsilon \cos x \cos y \sin \omega t
$$

where ϵ is a small constant.
The corresponding velocity field is

$$
\mathbf{u}(\mathbf{x}, t)=\mathbf{u}_{0}(\mathbf{x})+\epsilon \mathbf{u}_{1}(\mathbf{x}, t)=\left(-\frac{\partial \psi_{0}}{\partial y}-\epsilon \frac{\partial \psi_{1}}{\partial y}, \frac{\partial \psi_{0}}{\partial x}+\epsilon \frac{\partial \psi_{1}}{\partial x}\right)
$$

(i) What does it mean to say that the unperturbed flow (with $\epsilon=0$) is integrable? Sketch the streamlines of the flow with $\epsilon=0$, identify the fixed points and indicate their stability. Also indicate the stable and unstable manifolds of the fixed points, where relevant. (You need consider only the region $-\frac{1}{2} \pi<x<\frac{3}{2} \pi$, $-\frac{1}{2} \pi<y<\frac{3}{2} \pi$.)
(ii) Briefly describe the significance of intersections between stable and unstable manifolds in the perturbed flow (with $\epsilon>0$).
(iii) The existence of intersections may be demonstrated, when ϵ is small, by the Melnikov perturbation technique. In this technique, the heteroclinic curve that joins the two hyperbolic points \mathbf{x}_{0}^{-}and \mathbf{x}_{0}^{+}of the unperturbed flow is parametrised by $\mathbf{x}=\mathbf{q}_{0}(s),-\infty<s<\infty$, with $\mathbf{q}_{0}(0)=\mathbf{X}_{0}$, a specified reference point, and $d \mathbf{q}_{0} / d s=\mathbf{u}_{0}\left(\mathbf{q}_{0}(s)\right)$. (This curve forms the unstable manifold of \mathbf{x}_{0}^{-}and the stable manifold of \mathbf{x}_{0}^{+}.)
In the perturbed flow $(\epsilon>0)$ there are hyperbolic trajectories $\mathbf{x}^{-}(t)$ corresponding to \mathbf{x}_{0}^{-}and $\mathbf{x}^{+}(t)$ corresponding to \mathbf{x}_{0}^{+}, where $\mathbf{x}^{-}(t)$ and $\mathbf{x}^{+}(t)$ are periodic functions of time.

Let $\mathbf{q}^{s}\left(t, t_{0}\right)=\mathbf{q}_{0}\left(t-t_{0}\right)+\epsilon \mathbf{q}_{1}^{s}\left(t, t_{0}\right)+O\left(\epsilon^{2}\right)$ for $t \geq t_{0}$, such that $\mathbf{q}^{s}\left(t, t_{0}\right) \rightarrow \mathbf{x}^{+}(t)$ as $t \rightarrow \infty$, be a trajectory in the stable manifold of $\mathbf{x}^{+}(t)$ and let $\mathbf{q}^{u}\left(t, t_{0}\right)=\mathbf{q}_{0}\left(t-t_{0}\right)+$ $\epsilon \mathbf{q}_{1}^{u}\left(t, t_{0}\right)+O\left(\epsilon^{2}\right)$ for $t \leq t_{0}$, such that $\mathbf{q}^{u}\left(t, t_{0}\right) \rightarrow \mathbf{x}^{-}(t)$ as $t \rightarrow-\infty$, be a trajectory in the unstable manifold of $\mathbf{x}^{-}(t)$.

By considering the rate of change of $\nabla \psi_{0}\left(\mathbf{q}_{0}\left(t-t_{0}\right)\right) \cdot \mathbf{q}_{1}^{s}\left(t, t_{0}\right)$ and $\nabla \psi_{0}\left(\mathbf{q}_{0}(t-\right.$ $\left.\left.t_{0}\right)\right) \cdot \mathbf{q}_{1}^{u}\left(t, t_{0}\right)$ with respect to t show that the function $M\left(\mathbf{X}_{0}, t_{0}\right)$, defined by

$$
M\left(\mathbf{X}_{0}, t_{0}\right)=\nabla \psi_{0}\left(\mathbf{q}_{0}(0)\right) \cdot\left(\mathbf{q}_{1}^{u}\left(t_{0}, t_{0}\right)-\mathbf{q}_{1}^{s}\left(t_{0}, t_{0}\right)\right)
$$

is given by the expression

$$
M\left(\mathbf{X}_{0}, t_{0}\right)=\int_{-\infty}^{\infty} \nabla \psi_{0}\left(\mathbf{q}_{0}\left(\tau-t_{0}\right)\right) \cdot \mathbf{u}_{1}\left(\mathbf{q}_{0}\left(\tau-t_{0}\right), \tau\right) d \tau
$$

Explain why the existence of simple zeros of $M\left(\mathbf{X}_{0}, t_{0}\right)$ as \mathbf{X}_{0} or t_{0} varies implies the existence of transverse intersections between the stable and unstable manifolds of the unperturbed flow.
(iv) Consider the heteroclinic curve $y=0,0<x<\pi$ of the above flow with $\epsilon=0$ and take $\mathbf{X}_{0}=\left(X_{0}, 0\right)$.

Evaluate $M\left(\mathbf{X}_{0}, t_{0}\right)$. What does the form of $M\left(\mathbf{X}_{0}, t_{0}\right)$ imply about the transport properties of the perturbed flow?
[You may find it useful to note that $\int_{-\infty}^{\infty} \operatorname{sech}^{2} \mathrm{t} \cos \alpha t . d t=\pi \alpha \operatorname{cosech}(\pi \alpha / 2)$.]

