

MATHEMATICAL TRIPOS Part III

Thursday 30 May 2002 9 to 11

PAPER 50

MECHANICS OF COMPOSITES

Attempt **THREE** questions There are **five** questions in total The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1 (a)** Express the mean value $\overline{\varepsilon}_{ij}$ of the strain $\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$ over a domain Ω as an integral involving the displacement components u_i over the boundary $\partial\Omega$. Express the mean value $\overline{\sigma}_{ij}$ of the self-equilibrated stress σ_{ij} over Ω as an integral involving the traction components t_i over the boundary $\partial\Omega$. Prove that

$$\frac{1}{|\Omega|} \int_{\Omega} \sigma_{ij} \varepsilon_{ij} \, d\boldsymbol{x} - \overline{\sigma}_{ij} \overline{\varepsilon}_{ij} = \frac{1}{|\Omega|} \int_{\partial\Omega} (\sigma_{ij} - \overline{\sigma}_{ij}) n_j (u_i - \overline{\varepsilon}_{ik} x_k) \, dS.$$

(b) The effective energy density function W^{eff} of an inhomogeneous body, with local energy density function $W(\varepsilon, \boldsymbol{x})$, occupying a domain Ω , is defined to be

$$W^{\text{eff}}(\overline{\varepsilon}) = rac{1}{|\Omega|} \int_{\Omega} W(\varepsilon, \boldsymbol{x}) \, d\boldsymbol{x},$$

where ε_{ij} is the strain field induced in Ω when the boundary condition $u_i = \overline{\varepsilon}_{ik} x_k$ is applied over $\partial \Omega$. Prove that the mean stress and mean strain are related so that

$$\overline{\sigma}_{ij} = \frac{\partial W^{\text{eff}}(\overline{\varepsilon})}{\partial \overline{\varepsilon}_{ij}}.$$
(*)

(c) In the Voigt approximation, ε_{ij} is taken to be uniform and so equal to $\overline{\varepsilon}_{ij}$. Prove that the mean stress $\overline{\sigma}_{ij}$, calculated directly from this prescription, conforms to (*), with $W^{\text{eff}}(\overline{\varepsilon})$ replaced by its Voigt approximation

$$W_V(\overline{\varepsilon}) = \overline{W}(\overline{\varepsilon}) = \frac{1}{|\Omega|} \int_{\Omega} W(\overline{\varepsilon}, \boldsymbol{x}) \, d\boldsymbol{x}.$$

Prove the analogous result for the Reuss approximation

$$W_R(\overline{\varepsilon}) = (\overline{W^*})^*(\overline{\varepsilon}),$$

which is obtained by taking $\sigma_{ij} = \overline{\sigma}_{ij}$.

Paper 50

2 Give the conditions of continuity that must apply at a perfectly bonded interface with normal n between two elastic media.

A laminate is composed of N different elastic materials, material of type r having elastic constant tensor \mathbf{C}^r $(r = 1, 2 \cdots N)$. All interfaces have normal \mathbf{n} . The objective is to construct equilibrium stress and strain fields that take constant values σ_{ij}^r , ε_{ij}^r in material r, and to deduce the effective elastic constant tensor \mathbf{C}^{eff} that relates their mean values $\overline{\sigma} = \sum_{r=1}^{N} c_r \sigma^r$ and $\overline{\varepsilon} = \sum_{r=1}^{N} c_r \varepsilon^r$, where c_r is the volume fraction of material r. Introduce an additional, fictitious, material, with elastic constant tensor \mathbf{C}^0 , and suppose that, if this material were also present in the laminate, the stress and strain within it would be σ^0 , ε^0 . Explain why it is possible to take

$$\varepsilon_{ij}^r = \varepsilon_{ij}^0 + (\alpha_i^r n_j + \alpha_j^r n_i)/2$$

for some α_i^r . Deduce the relation

$$\varepsilon^r = [\boldsymbol{I} - \tilde{\boldsymbol{\Gamma}}^r(\boldsymbol{n})(\boldsymbol{C}^r - \boldsymbol{C}^0)]\varepsilon^0,$$

where

$$\tilde{\Gamma}_{ijkl}^{r}(\boldsymbol{n}) = n_{i} \left(K^{r}(\boldsymbol{n}) \right)_{jk}^{-1} n_{l} \Big|_{(ij),(kl)}; \quad K_{ik}^{r}(\boldsymbol{n}) = C_{ijkl}^{r} n_{j} n_{l}.$$

Prove that

$$\tilde{\boldsymbol{\Gamma}}^r (\boldsymbol{C}^r - \boldsymbol{C}^s) \tilde{\boldsymbol{\Gamma}}^s = \tilde{\boldsymbol{\Gamma}}^s - \tilde{\boldsymbol{\Gamma}}^r$$

for any r, s.

Deduce that

$$oldsymbol{C}^{ ext{eff}} = \left\langle oldsymbol{C} [oldsymbol{I} + ilde{oldsymbol{\Gamma}}^0 (oldsymbol{C} - oldsymbol{C}^0)]^{-1}
ight
angle \left\langle [oldsymbol{I} + ilde{oldsymbol{\Gamma}}^0 (oldsymbol{C} - oldsymbol{C}^0)]^{-1}
ight
angle^{-1},$$

where $\langle f \rangle \equiv \overline{f} = \sum_{r=1}^{N} c_r f^r$. Show that this expression is independent of the choice of C^0 .

[TURN OVER

4

3 Specialize the general representation

$$\boldsymbol{\Gamma}(\boldsymbol{x}) = \frac{-1}{8\pi^2} \int_{|\boldsymbol{\xi}|=1} \tilde{\boldsymbol{\Gamma}}(\boldsymbol{\xi}) \delta''(\boldsymbol{\xi}.\boldsymbol{x}) \, dS,$$

where $\tilde{\Gamma}_{ijkl}(\xi) = \xi_i(K^{-1}(\xi))_{jk}\xi_l|_{(ij),(kl)}$ with $K_{ik}(\xi) = C^0_{ijkl}\xi_j\xi_l$, to the case of an isotropic tensor C^0 , characterized by bulk modulus κ^0 and shear modulus μ^0 :

$$C_{ijkl}^{0} = \kappa^{0} \delta_{ij} \delta_{kl} + \mu^{0} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - 2\delta_{ij} \delta_{kl}/3).$$

Calculate $\Gamma_{ijkk}(\boldsymbol{x})$ explicitly and deduce that

$$\Gamma_{iikk}(\boldsymbol{x}) = \frac{1}{\kappa^0 + 4\mu^0/3} \delta(\boldsymbol{x}),$$

where $\delta(\boldsymbol{x})$ is the three-dimensional Dirac delta.

An infinite isotropic matrix with bulk modulus κ^0 and shear modulus μ^0 contains a bounded region V within which the bulk modulus is $\kappa(\mathbf{x})$ but the shear modulus remains μ^0 . The matrix is loaded in such a way that, if $\kappa(\mathbf{x})$ were equal to κ^0 throughout V, the strain field would be $\varepsilon^0(\mathbf{x})$. Using the matrix as comparison material, show that the polarization within V has the form $\tau_{ij}(\mathbf{x}) = \tau(\mathbf{x})\delta_{ij}$ for some scalar $\tau(\mathbf{x})$. Deduce that, within V,

$$arepsilon_{kk}(oldsymbol{x}) = rac{3\kappa^0 + 4\mu^0}{3\kappa(oldsymbol{x}) + 4\mu^0}arepsilon_{kk}^0(oldsymbol{x}),$$

and

$$arepsilon_{ij}(oldsymbol{x}) = arepsilon_{ij}^0(oldsymbol{x}) + rac{1}{4\pi}rac{\partial^2}{\partial x_i\partial x_j}\int_V rac{3(\kappa(oldsymbol{x}')-\kappa^0)}{3\kappa(oldsymbol{x}')+4\mu^0}\,rac{arepsilon_{kk}^0(oldsymbol{x}')}{|oldsymbol{x}-oldsymbol{x}'|}\,doldsymbol{x}'.$$

Paper 50

5

4 The Hashin–Shtrikman variational approximation C^{HS} for the effective conductivity tensor of a polycrystal is given by

$$\boldsymbol{C}^{HS} = \left\langle [\boldsymbol{I} + (\boldsymbol{C} - \boldsymbol{C}^{0})\boldsymbol{P}]^{-1} \right\rangle^{-1} \left\langle [\boldsymbol{I} + (\boldsymbol{C} - \boldsymbol{C}^{0})\boldsymbol{P}]^{-1}\boldsymbol{C} \right\rangle,$$

where $\langle \rangle$ denotes an average over all crystal orientations.

In two dimensions, the tensor $C (= C_{ij})$ has principal values C_1 , and C_2 , and $P = \frac{1}{2C^0}I$, with $C^0 = C^0I$, where I the two-dimensional identity tensor. Given that all orientations occur with equal frequency, prove that

$$\boldsymbol{C}^{HS} = \frac{2C_1C_2 + C^0(C_1 + C_2)}{C_1 + C_2 + 2C^0} \, \boldsymbol{I}.$$

Deduce the Hashin–Shtrikman lower and upper bounds $(C_l, C_u$ respectively) and show that the self-consistent approximation is

$$C_{SC} = C_{SC}I; \quad C_{SC} = (C_1C_2)^{1/2}.$$

Prove that $C_l \leq C_{SC} \leq C_u$.

[TURN OVER

6

5 Prove the minimum energy principle in the form

$$\int_{\Omega} \left(W(\varepsilon) - \sigma_0 \varepsilon \right) d\boldsymbol{x} \leqslant \int_{\Omega} \left(W(\varepsilon') - \sigma_0 \varepsilon' \right) d\boldsymbol{x},$$

where ε is the actual strain field within an elastic solid occupying the domain Ω , and ε' is any candidate strain field, associated with a displacement that satisfies any displacement boundary conditions that may be specified on the boundary $\partial\Omega$. The energy density function W is convex and σ_0 is any stress field that satisfies the equilibrium equations (with the given body force \mathbf{f}) and any prescribed traction boundary conditions on $\partial\Omega$.

The effective energy density function $W^{\text{eff}}(\bar{\varepsilon})$ of a composite with local energy function $W(\varepsilon, \boldsymbol{x})$, occupying a domain Ω (whose volume is normalized to 1) is defined as

$$W^{\text{eff}}(\overline{\varepsilon}) = \inf_{\varepsilon \in K} \int_{\Omega} W(\varepsilon, \boldsymbol{x}) \, d\boldsymbol{x},$$

where K denotes the set of strains compatible with the displacement boundary condition $u_i = \bar{\varepsilon}_{ik} x_k$ on $\partial \Omega$. Prove that, for any choice of $\tau(\boldsymbol{x})$ (with components τ_{ij}) and any function $W_0(\varepsilon)$,

$$W^{\text{eff}}(\overline{\varepsilon}) \leq \inf_{\varepsilon \in K} \int_{\Omega} \left[\tau_{ij} \varepsilon_{ij} + W_0(\varepsilon) - (W - W_0)_*(\tau, \boldsymbol{x}) \right] d\boldsymbol{x},$$

where

$$(W - W_0)_*(\tau, \boldsymbol{x}) = \inf_{\varepsilon} \{\tau_{ij} \varepsilon_{ij} - (W - W_0)(\varepsilon, \boldsymbol{x})\}.$$

Suppose that the composite has n constituents, so that

$$W(\varepsilon, \boldsymbol{x}) = \sum_{r=1}^{n} W_r(\varepsilon) \chi_r(\boldsymbol{x}),$$

where $\chi_r(\boldsymbol{x})$ is the characteristic function of the region occupied by material r. Choosing $W_0(\varepsilon) = \frac{1}{2} \varepsilon \boldsymbol{C}^0 \varepsilon$ and

$$\tau(\boldsymbol{x}) = \sum_{r=1}^{n} \tau^{r} \chi_{r}(\boldsymbol{x}),$$

deduce the bound

$$W^{\text{eff}}(\overline{\varepsilon}) \leqslant \frac{1}{2} \overline{\varepsilon} \boldsymbol{C}^0 \overline{\varepsilon} + \frac{1}{2} \sum_r c_r \tau_{ij}^r (\varepsilon_{ij} - \varepsilon_{ij}^r) + \sum_r c_r (W - W_0)_{**} (\varepsilon^r),$$

where $\varepsilon^r = (W_r - W_0)'_*(\tau^r)$ so that $(W_r - W_0)_*(\tau^r) + (W_r - W_0)_{**}(\varepsilon^r) = \tau^r_{ij}\varepsilon^r_{ij}$,

$$c_r \varepsilon^r + \sum_s A_{rs} \tau^s = c_r \overline{\varepsilon}$$

and

$$c_r = \int_{\Omega} \chi_r(\boldsymbol{x}) d\boldsymbol{x}, \quad \boldsymbol{A}_{rs} = \int_{\Omega} d\boldsymbol{x} \int_{\Omega} d\boldsymbol{x}' (\chi_r(\boldsymbol{x}) - c_r) \boldsymbol{\Gamma}(\boldsymbol{x}, \boldsymbol{x}') (\chi_s(\boldsymbol{x}') - c_s).$$

[Recall that the operator Γ is such that $\varepsilon(\mathbf{x}) = -\int_{\Omega} \Gamma(\mathbf{x}, \mathbf{x}') \tau(\mathbf{x}') d\mathbf{x}'$ is associated with a displacement field $\mathbf{u}(\mathbf{x})$ for which

$$C^0_{ijkl}u_{k,lj} + au_{ij,j} = 0 ext{ in } \Omega, \quad u_i(\boldsymbol{x}) = 0 ext{ on } \partial\Omega.$$

The properties $\int_{\Omega} \boldsymbol{\Gamma} d\boldsymbol{x} = 0$, $\boldsymbol{\Gamma} \boldsymbol{C}^{0} \boldsymbol{\Gamma} = \boldsymbol{\Gamma}$, $\Gamma_{ijkl}(\boldsymbol{x}, \boldsymbol{x}') = \Gamma_{klij}(\boldsymbol{x}', \boldsymbol{x})$ may be assumed.]

Paper 50