PAPER 50
 MECHANICS OF COMPOSITES

Attempt THREE questions
There are five questions in total
The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Express the mean value $\bar{\varepsilon}_{i j}$ of the strain $\varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)$ over a domain Ω as an integral involving the displacement components u_{i} over the boundary $\partial \Omega$. Express the mean value $\bar{\sigma}_{i j}$ of the self-equilibrated stress $\sigma_{i j}$ over Ω as an integral involving the traction components t_{i} over the boundary $\partial \Omega$. Prove that

$$
\frac{1}{|\Omega|} \int_{\Omega} \sigma_{i j} \varepsilon_{i j} d \boldsymbol{x}-\bar{\sigma}_{i j} \bar{\varepsilon}_{i j}=\frac{1}{|\Omega|} \int_{\partial \Omega}\left(\sigma_{i j}-\bar{\sigma}_{i j}\right) n_{j}\left(u_{i}-\bar{\varepsilon}_{i k} x_{k}\right) d S
$$

(b) The effective energy density function $W^{\text {eff }}$ of an inhomogeneous body, with local energy density function $W(\varepsilon, \boldsymbol{x})$, occupying a domain Ω, is defined to be

$$
W^{\mathrm{eff}}(\bar{\varepsilon})=\frac{1}{|\Omega|} \int_{\Omega} W(\varepsilon, \boldsymbol{x}) d \boldsymbol{x}
$$

where $\varepsilon_{i j}$ is the strain field induced in Ω when the boundary condition $u_{i}=\bar{\varepsilon}_{i k} x_{k}$ is applied over $\partial \Omega$. Prove that the mean stress and mean strain are related so that

$$
\begin{equation*}
\bar{\sigma}_{i j}=\frac{\partial W^{\mathrm{eff}}(\bar{\varepsilon})}{\partial \bar{\varepsilon}_{i j}} . \tag{*}
\end{equation*}
$$

(c) In the Voigt approximation, $\varepsilon_{i j}$ is taken to be uniform and so equal to $\bar{\varepsilon}_{i j}$. Prove that the mean stress $\bar{\sigma}_{i j}$, calculated directly from this prescription, conforms to $(*)$, with $W^{\text {eff }}(\bar{\varepsilon})$ replaced by its Voigt approximation

$$
W_{V}(\bar{\varepsilon})=\bar{W}(\bar{\varepsilon})=\frac{1}{|\Omega|} \int_{\Omega} W(\bar{\varepsilon}, \boldsymbol{x}) d \boldsymbol{x}
$$

Prove the analogous result for the Reuss approximation

$$
W_{R}(\bar{\varepsilon})=\left(\overline{W^{*}}\right)^{*}(\bar{\varepsilon}),
$$

which is obtained by taking $\sigma_{i j}=\bar{\sigma}_{i j}$.

2 Give the conditions of continuity that must apply at a perfectly bonded interface with normal \boldsymbol{n} between two elastic media.

A laminate is composed of N different elastic materials, material of type r having elastic constant tensor $\boldsymbol{C}^{r}(r=1,2 \cdots N)$. All interfaces have normal \boldsymbol{n}. The objective is to construct equilibrium stress and strain fields that take constant values $\sigma_{i j}^{r}, \varepsilon_{i j}^{r}$ in material r, and to deduce the effective elastic constant tensor $\boldsymbol{C}^{\text {eff }}$ that relates their mean values $\bar{\sigma}=\sum_{r=1}^{N} c_{r} \sigma^{r}$ and $\bar{\varepsilon}=\sum_{r=1}^{N} c_{r} \varepsilon^{r}$, where c_{r} is the volume fraction of material r. Introduce an additional, fictitious, material, with elastic constant tensor \boldsymbol{C}^{0}, and suppose that, if this material were also present in the laminate, the stress and strain within it would be $\sigma^{0}, \varepsilon^{0}$. Explain why it is possible to take

$$
\varepsilon_{i j}^{r}=\varepsilon_{i j}^{0}+\left(\alpha_{i}^{r} n_{j}+\alpha_{j}^{r} n_{i}\right) / 2
$$

for some α_{i}^{r}. Deduce the relation

$$
\varepsilon^{r}=\left[\boldsymbol{I}-\tilde{\boldsymbol{\Gamma}}^{r}(\boldsymbol{n})\left(\boldsymbol{C}^{r}-\boldsymbol{C}^{0}\right)\right] \varepsilon^{0},
$$

where

$$
\tilde{\Gamma}_{i j k l}^{r}(\boldsymbol{n})=\left.n_{i}\left(K^{r}(\boldsymbol{n})\right)_{j k}^{-1} n_{l}\right|_{(i j),(k l)} ; \quad K_{i k}^{r}(\boldsymbol{n})=C_{i j k l}^{r} n_{j} n_{l} .
$$

Prove that

$$
\tilde{\Gamma}^{r}\left(\boldsymbol{C}^{r}-C^{s}\right) \tilde{\Gamma}^{s}=\tilde{\Gamma}^{s}-\tilde{\Gamma}^{r}
$$

for any r, s.
Deduce that

$$
\boldsymbol{C}^{\mathrm{eff}}=\left\langle\boldsymbol{C}\left[\boldsymbol{I}+\tilde{\boldsymbol{\Gamma}}^{0}\left(\boldsymbol{C}-\boldsymbol{C}^{0}\right)\right]^{-1}\right\rangle\left\langle\left[\boldsymbol{I}+\tilde{\boldsymbol{\Gamma}}^{0}\left(\boldsymbol{C}-\boldsymbol{C}^{0}\right)\right]^{-1}\right\rangle^{-1},
$$

where $\langle f\rangle \equiv \bar{f}=\sum_{r=1}^{N} c_{r} f^{r}$. Show that this expression is independent of the choice of C^{0}.

3 Specialize the general representation

$$
\boldsymbol{\Gamma}(\boldsymbol{x})=\frac{-1}{8 \pi^{2}} \int_{|\xi|=1} \tilde{\boldsymbol{\Gamma}}(\xi) \delta^{\prime \prime}(\xi \cdot \boldsymbol{x}) d S
$$

where $\tilde{\Gamma}_{i j k l}(\xi)=\left.\xi_{i}\left(K^{-1}(\xi)\right)_{j k} \xi_{l}\right|_{(i j),(k l)}$ with $K_{i k}(\xi)=C_{i j k l}^{0} \xi_{j} \xi_{l}$, to the case of an isotropic tensor \boldsymbol{C}^{0}, characterized by bulk modulus κ^{0} and shear modulus μ^{0} :

$$
C_{i j k l}^{0}=\kappa^{0} \delta_{i j} \delta_{k l}+\mu^{0}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}-2 \delta_{i j} \delta_{k l} / 3\right)
$$

Calculate $\Gamma_{i j k k}(\boldsymbol{x})$ explicitly and deduce that

$$
\Gamma_{i i k k}(\boldsymbol{x})=\frac{1}{\kappa^{0}+4 \mu^{0} / 3} \delta(\boldsymbol{x}),
$$

where $\delta(\boldsymbol{x})$ is the three-dimensional Dirac delta.
An infinite isotropic matrix with bulk modulus κ^{0} and shear modulus μ^{0} contains a bounded region V within which the bulk modulus is $\kappa(\boldsymbol{x})$ but the shear modulus remains μ^{0}. The matrix is loaded in such a way that, if $\kappa(\boldsymbol{x})$ were equal to κ^{0} throughout V, the strain field would be $\varepsilon^{0}(\boldsymbol{x})$. Using the matrix as comparison material, show that the polarization within V has the form $\tau_{i j}(\boldsymbol{x})=\tau(\boldsymbol{x}) \delta_{i j}$ for some scalar $\tau(\boldsymbol{x})$. Deduce that, within V,

$$
\varepsilon_{k k}(\boldsymbol{x})=\frac{3 \kappa^{0}+4 \mu^{0}}{3 \kappa(\boldsymbol{x})+4 \mu^{0}} \varepsilon_{k k}^{0}(\boldsymbol{x}),
$$

and

$$
\varepsilon_{i j}(\boldsymbol{x})=\varepsilon_{i j}^{0}(\boldsymbol{x})+\frac{1}{4 \pi} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \int_{V} \frac{3\left(\kappa\left(\boldsymbol{x}^{\prime}\right)-\kappa^{0}\right)}{3 \kappa\left(\boldsymbol{x}^{\prime}\right)+4 \mu^{0}} \frac{\varepsilon_{k k}^{0}\left(\boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d \boldsymbol{x}^{\prime}
$$

4 The Hashin-Shtrikman variational approximation $\boldsymbol{C}^{H S}$ for the effective conductivity tensor of a polycrystal is given by

$$
\boldsymbol{C}^{H S}=\left\langle\left[\boldsymbol{I}+\left(\boldsymbol{C}-\boldsymbol{C}^{0}\right) \boldsymbol{P}\right]^{-1}\right\rangle^{-1}\left\langle\left[\boldsymbol{I}+\left(\boldsymbol{C}-\boldsymbol{C}^{0}\right) \boldsymbol{P}\right]^{-1} \boldsymbol{C}\right\rangle,
$$

where \rangle denotes an average over all crystal orientations.
In two dimensions, the tensor $\boldsymbol{C}\left(=C_{i j}\right)$ has principal values C_{1}, and C_{2}, and $\boldsymbol{P}=\frac{1}{2 C^{0}} \boldsymbol{I}$, with $\boldsymbol{C}^{0}=C^{0} \boldsymbol{I}$, where \boldsymbol{I} the two-dimensional identity tensor. Given that all orientations occur with equal frequency, prove that

$$
\boldsymbol{C}^{H S}=\frac{2 C_{1} C_{2}+C^{0}\left(C_{1}+C_{2}\right)}{C_{1}+C_{2}+2 C^{0}} \boldsymbol{I}
$$

Deduce the Hashin-Shtrikman lower and upper bounds (C_{l}, C_{u} respectively) and show that the self-consistent approximation is

$$
\boldsymbol{C}_{S C}=C_{S C} \boldsymbol{I} ; \quad C_{S C}=\left(C_{1} C_{2}\right)^{1 / 2}
$$

Prove that $C_{l} \leqslant C_{S C} \leqslant C_{u}$.

5 Prove the minimum energy principle in the form

$$
\int_{\Omega}\left(W(\varepsilon)-\sigma_{0} \varepsilon\right) d \boldsymbol{x} \leqslant \int_{\Omega}\left(W\left(\varepsilon^{\prime}\right)-\sigma_{0} \varepsilon^{\prime}\right) d \boldsymbol{x}
$$

where ε is the actual strain field within an elastic solid occupying the domain Ω, and ε^{\prime} is any candidate strain field, associated with a displacement that satisfies any displacement boundary conditions that may be specified on the boundary $\partial \Omega$. The energy density function W is convex and σ_{0} is any stress field that satisfies the equilibrium equations (with the given body force \boldsymbol{f}) and any prescribed traction boundary conditions on $\partial \Omega$.

The effective energy density function $W^{\text {eff }}(\bar{\varepsilon})$ of a composite with local energy function $W(\varepsilon, \boldsymbol{x})$, occupying a domain Ω (whose volume is normalized to 1) is defined as

$$
W^{\mathrm{eff}}(\bar{\varepsilon})=\inf _{\varepsilon \in K} \int_{\Omega} W(\varepsilon, \boldsymbol{x}) d \boldsymbol{x}
$$

where K denotes the set of strains compatible with the displacement boundary condition $u_{i}=\bar{\varepsilon}_{i k} x_{k}$ on $\partial \Omega$. Prove that, for any choice of $\tau(\boldsymbol{x})$ (with components $\tau_{i j}$) and any function $W_{0}(\varepsilon)$,

$$
W^{\mathrm{eff}}(\bar{\varepsilon}) \leqslant \inf _{\varepsilon \in K} \int_{\Omega}\left[\tau_{i j} \varepsilon_{i j}+W_{0}(\varepsilon)-\left(W-W_{0}\right)_{*}(\tau, \boldsymbol{x})\right] d \boldsymbol{x}
$$

where

$$
\left(W-W_{0}\right)_{*}(\tau, \boldsymbol{x})=\inf _{\varepsilon}\left\{\tau_{i j} \varepsilon_{i j}-\left(W-W_{0}\right)(\varepsilon, \boldsymbol{x})\right\}
$$

Suppose that the composite has n constituents, so that

$$
W(\varepsilon, \boldsymbol{x})=\sum_{r=1}^{n} W_{r}(\varepsilon) \chi_{r}(\boldsymbol{x})
$$

where $\chi_{r}(\boldsymbol{x})$ is the characteristic function of the region occupied by material r. Choosing $W_{0}(\varepsilon)=\frac{1}{2} \varepsilon \boldsymbol{C}^{0} \varepsilon$ and

$$
\tau(\boldsymbol{x})=\sum_{r=1}^{n} \tau^{r} \chi_{r}(\boldsymbol{x})
$$

deduce the bound

$$
W^{\mathrm{eff}}(\bar{\varepsilon}) \leqslant \frac{1}{2} \bar{\varepsilon} \boldsymbol{C}^{0} \bar{\varepsilon}+\frac{1}{2} \sum_{r} c_{r} \tau_{i j}^{r}\left(\varepsilon_{i j}-\varepsilon_{i j}^{r}\right)+\sum_{r} c_{r}\left(W-W_{0}\right)_{* *}\left(\varepsilon^{r}\right)
$$

where $\varepsilon^{r}=\left(W_{r}-W_{0}\right)_{*}^{\prime}\left(\tau^{r}\right)$ so that $\left(W_{r}-W_{0}\right)_{*}\left(\tau^{r}\right)+\left(W_{r}-W_{0}\right)_{* *}\left(\varepsilon^{r}\right)=\tau_{i j}^{r} \varepsilon_{i j}^{r}$,

$$
c_{r} \varepsilon^{r}+\sum_{s} \boldsymbol{A}_{r s} \tau^{s}=c_{r} \bar{\varepsilon}
$$

and

$$
c_{r}=\int_{\Omega} \chi_{r}(\boldsymbol{x}) d \boldsymbol{x}, \quad \boldsymbol{A}_{r s}=\int_{\Omega} d \boldsymbol{x} \int_{\Omega} d \boldsymbol{x}^{\prime}\left(\chi_{r}(\boldsymbol{x})-c_{r}\right) \boldsymbol{\Gamma}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\left(\chi_{s}\left(\boldsymbol{x}^{\prime}\right)-c_{s}\right) .
$$

[Recall that the operator $\boldsymbol{\Gamma}$ is such that $\varepsilon(\boldsymbol{x})=-\int_{\Omega} \boldsymbol{\Gamma}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \tau\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x}^{\prime}$ is associated with a displacement field $\boldsymbol{u}(\boldsymbol{x})$ for which

$$
C_{i j k l}^{0} u_{k, l j}+\tau_{i j, j}=0 \text { in } \Omega, \quad u_{i}(\boldsymbol{x})=0 \text { on } \partial \Omega .
$$

The properties $\int_{\Omega} \boldsymbol{\Gamma} d \boldsymbol{x}=0, \boldsymbol{\Gamma} \boldsymbol{C}^{0} \boldsymbol{\Gamma}=\boldsymbol{\Gamma}, \Gamma_{i j k l}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\Gamma_{k l i j}\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)$ may be assumed.]

