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1 Let P be the linear programming problem: maximize {c>x : Ax 6 b, x > 0},
where x, c ∈ Rn, b ∈ Rm and A is m× n. What is its dual, D?

Explain why the following are true.

(a) If P is feasible then D is bounded.

(b) If P is feasible and bounded then D is feasible and bounded.

Suppose that the polytope Π = {x : Ax 6 b, x > 0} is empty. Show that there
exists some λ > 0 such that λ>A > 0> and λ>b = −1.

Let Π(ε) = {x : Ax 6 b + εe, x > 0}, where e> = (1, . . . , 1) and ε > 0. Given
that Π = Π(0) is empty, and λ is as above, show that Π(ε) is empty for all ε such that
0 6 ε < 1/

∑
i λi.

Explain the relevance of this result to the theory of the ellipsoid algorithm.

2 The Klee-Minty polytope in R3 is the intersection of the six halfspaces on which
x = (x1, x2, x3) satisfies the following constraints, for given ε, 0 < ε < 1/2:

x1 > 0 ,
x1 6 1 ,
x2 > εx1 ,

x2 6 1− εx1 ,

x3 > εx2 ,

x3 6 1− εx2 .

This polytope, P , has six facets, which are respectively indexed as 1, 2, . . . , 6, as they lie on
a boundary of each of the above six halfspaces. The vertex at the intersection of the first,
third and fifth facets is v0 = (0, 0, 0). Bland’s pivot rule says that at each successive step
of the simplex algorithm the solution should move from the current vertex of the feasible
set to an adjacent vertex; the objective function value should increase, and if there is
more than one adjacent vertex at which that value increases then we should pick the one
that we move to along the edge that is leaving the facet of smallest index. It is desired
to maximize x3 over P . Show, using a picture, the steps taken by the simplex algorithm
under Bland’s rule, starting from v0.

Discuss the worst-case running time of the simplex algorithm under Bland’s rule.

Show that there are examples of linear programs, in decision variables x ∈ Rn, and
with 2n constraints, in which it takes at least n pivots to move from an initial solution to
the optimum, no matter how the pivots are chosen.

An alternative to Bland’s pivot rule is Dantzig’s rule, in which we are to move to
an adjacent vertex along an edge for which the rate of increase in the objective function
is greatest. Describe how to modify P to show that there is a similar example for which
Dantzig’s rule is inefficient.
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3 Describe the minimum cost flow problem.

Explain how one can use the Lagrangian sufficiency theorem to identify an optimal
solution by means of node numbers.

A network has nodes N = {1, 2, 3, 4} and directed arcs A = {(1, 2), (2, 3), (3, 4),
(4, 1)}. Nodes 1, 3 and 4 are sources, for flow amounts 1 each. Node 2 is a sink, for flow of
amount 3. The minimum permitted flows on arcs (1, 2), (2, 3), (3, 4), (4, 1) are 3, 2, 2, 0,
respectively; the maximum permitted flows are 8, 5, 5, 8, respectively. The costs per unit
flow on these arcs are c12, c23, c34, c41, respectively. Show that there is a feasible solution
in which arc (2, 3) carries flow of 2.

Derive a condition in terms of c12, c23, c34, c41 under which this is the minimum
cost flow.

Use the network simplex algorithm to find the minimum cost flow for all possible
values of the four cost variables {cij}, cij ∈ (−∞,∞).

Determine the numbers of (i) basic solutions, and (ii) basic feasible solutions to
this problem.

4 Let G = (V,E) be an undirected graph. Edge e has weight we and the edge weights
are distinct, say w1 < · · · < w|E|. Let S be a nonempty proper subset of V , and let edge
e = (u, v) be a edge of least weight that has one end in S and the other end in V \ S.
Prove that every minimum spanning tree must contain the edge e.

Use the above result to prove that a minimum spanning tree can be found both
by Prim’s algorithm (which you should state), and by Kruskal’s algorithm (in which we
build a spanning tree by successively considering edges in order of increasing edge weight,
inserting an edge if this does not create a cycle).

Is the minimum spanning tree unique?

Let C be a cycle in G, and let the edge e = (v, w) be the edge in C of maximum
weight. Prove that no minimum spanning tree can contain e. Use this to prove that the
minimum spanning tree problem can also be solved by a ‘reverse Kruskal’s algorithm’, in
which we start with the full graph (V,E) and then successively consider edges in order of
decreasing weight, deleting an edge if this does not disconnect the graph.
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5 Describe how to formulate the decision travelling salesman problem (TSP) as a 0–1
integer linear programming problem.

Carefully explain what it means to say that decision TSP is NP-complete.

In ‘decision Max-TSP’ the aim is to decide where there is a tour of length greater
than some given L. Given that TSP is NP-complete, show that Max-TSP is also NP-
complete.

Find a polynomial time 1/2-approximation algorithm for a Max-TSP optimization
problem, that is, an algorithm that produces a tour with length no less than 1/2 the
optimum. Hint: obtain an upper bound for the Max-TSP problem from the solution to
an assignment problem, and then modify this solution so that a single tour is obtained.

6 Define the notion of a Nash equilibrium in a n-person, nonzero-sum game.

A ‘symmetric game’ is one in which the same strategies are available to all players
and the payoff that a player obtains when playing a particular pure strategy depends only
that strategy and the strategies that other players employ, not on the identities of who
plays them. A symmetric equilibrium is one in which all players use the same strategy,
possibly mixed. Let e(i, p) be the expected payoff to a player who plays pure strategy i
against opponents who independently each use the same mixed strategy, which randomizes
over k pure strategies with probabilities p = (p1, . . . , pk). Let e(p) =

∑k
i=1 pie(i, p). Prove

that at least one symmetric equilibrium is guaranteed to exist. You may assume the
Brouwer fixed point theorem.

In a ‘least unique bid auction’ bidders are required to make their bids from a set
of values, say {1, 2, . . . , k} and the winner is the one who makes the least unique bid. The
winner pays his bid and obtains the object, which is worth V . If there is no unique bid
then there is no winner. Consider such an auction, with 3 bidders, k = 2 and V = 3. Find
all the symmetric equilibria.

What is the number of nonsymmetric equilibria?
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