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1 Consider the linear programming problem:

maximize 4x1 + 2x2 + x3

subject to
x1 6 5
4 x1 + x2 6 25
8 x1 + 4 x2 + x3 6 125

and x1, x2, x3 > 0. Solve this with the simplex algorithm, starting from x = (0, 0, 0),
and using the rule that whenever there is a choice as to which variable should next enter
the basis it should selected as the one that produces the greatest increase in the objective
function per unit increase in that variable.

Is there a pivot selection rule under which the problem would have been solved
more quickly?

Discuss the worst-case running time of the simplex algorithm.

2 Explain what is meant by the minimum-cost flow problem.

A project of n tasks is to be completed as quickly as possible. We may work
on more than one task at the same time, but we are subject to precedence constraints
expressed in the matrix a = (aij), such that if aij = 1 we may not start task j until task i
is complete; otherwise aij = 0 and there is no precedent constraint between i and j. Task
i has processing time τi, i = 1, . . . , n. Let ti be the earliest time at which task i can be
started. Formulate as a linear program the problem of minimizing tn+1− t0, where t0 and
tn+1 are the times at which the project starts and finishes.

Show that the dual LP can be expressed as an uncapacitated minimum cost flow
problem on a graph (N,A) where (i, j) ∈ A if and only if aij = 1 and the cost on arc (i, j)
is cij = −τi.

Illustrate an algorithm that can be used to solve any minimum cost flow problem by
applying it to the project of 6 tasks defined by the following data. Start your explanation at
a basic feasible solution corresponding to the tree with arcs {(0, 1), (2, 4), (4, 5), (5, 7), (4, 6),
(1, 3), (3, 5)}.

a =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 , τ = (3, 4, 5, 6, 4, 3).
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3 Explain in terms of the theory of computational complexity what it means to say
that a problem Π is no harder than another problem Π′.

Let A be the m×n payoff matrix for a two-person zero-sum game in which players
1 and 2 have m and n pure strategies respectively. Given A and a number V , let Π be the
problem of determining whether the value of the game equals V . Sketch an argument to
show that if P 6= NP then Π is not NP-hard.

In an instance of the Subset Cover Problem, SCP, we are given subsets S1, . . . , Sm

of S = {1, . . . , n}, and a number k < m, and ask ‘Are there k of these subsets whose
union is S?’ Consider the non-zero-sum game in which if player 1 plays pure strategy
i ∈ {1, . . . ,m} and player 2 plays pure strategy j ∈ {0, 1, . . . , n}, the payoff is

((e1(i, j), e2(i, j)) =


(1, 1) j = 0,
(1, 0) j > 1 and j ∈ Si,
(0, k

k−1 ) j > 1 and j 6∈ Si.

Show that if and only if the answer to the SCP instance is ‘Yes’ does there exist an
equilibrium in which player 1 randomizes with positive probabilities over just k of his pure
strategies.

Comment on the difficulty of computing all equilibria of a two-person non-zero-sum
game.

4 List the assumptions of a symmetric independent private values (SIPV) auction.

State the revenue equivalence theorem.

Let e(p) denote the minimal expected payment that a bidder can make if he wishes
to win an SIPV auction with probability p. Suppose that when a bidder with valuation
v seeks to maximize his expected profit he does so by choosing p = p(v) as a stationary
point of his expected profit function. Show that

de(p)
dp

∣∣∣
p=p(v)

= v,
de(p(v))

dv
= v

dp

dv
, and e(p(v)) = vp(v)−

∫ v

0

p(w) dw .

Consider a ‘lowest-price auction’ amongst n bidders in which the highest bidder
wins but he pays only the lowest bid. Assume that bidders’ valuations are independent
and uniformly distributed on [0, 1]. Show that, at the equilibrium, the seller’s expected
revenue is (n− 1)/(n + 1).

Suppose that when n = 3 there exists a contant A such that it is optimal in
equilibrium for a bidder with valuation v to bid Av. Find A.
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5 Define the meaning of an equilibrium in a multi-person game.

In a small town there are just 3 residents. A proposition regarding taxes is favoured
by residents B and C, but opposed by A. It will be passed in a ballot if and only if it
receives more votes in favour than against. Each resident has a cost of going to the polls
to vote of 3c. If the proposition passes, each of B and C will gain by 4c and A will lose
8c. Suppose A decides to go to the polls with probability α and each of B and C go
independently with probability β.

Find a condition that must be satisfied by β if there is to be an equilibrium with
0 < α < 1.

Show that there is an equilibrium of α = 1, β = 3/4.

Is this the only equilibrium?

6 Describe the methodology of branch and bound algorithms.

Consider an assignment problem in which four machines, a, b, c, d are to be assigned
to four tasks 1, 2, 3, 4 at minimal cost. The costs of assigning machines to tasks are given
in the matrix below. At the first stage of a branch and bound algorithm there are four
branches, in which machine a is assigned to either task 1, 2, 3 or 4. If machine a is assigned
to task 2, then a lower bound is computed by adding this cost (12) to the minimum costs
with which each of the unassigned jobs, 1, 3, 4, can be assigned to some unassigned
machine, e.g., 11, 13, and 22, respectively, for a total lower bound of 58. Branches from
this node, are those for which machine b is assigned to jobs 1, 3, or 4. In the branch in
which machine b is assigned to task 1 we would have a lower bound of 12+14+19+23 = 68.
Using a branching rule that branches on the node with least lower bound, complete the
branch and bound algorithm that is begun in the figure below, and find the optimal
assignment.

1 2 3 4
a 11 12 18 40
b 14 15 13 22
c 11 17 19 23
d 17 14 20 28

a=1 a=2 a=3 a=4

60

b=1 b=3 b=4

58

65 7858

5968 64

c=1 c=4

64 65

END OF PAPER
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