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LOCAL AND GLOBAL BIFURCATIONS

Attempt TWO questions. The questions are of equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 (a) Use the near-identity transformation

u = x+ α1x
3 + β1x

2y + γ1xy
2 + δ1y

3

v = y + α2x
3 + β2x

2y + γ2xy
2 + δ2y

3

to reduce the following second-order system of ODEs at a Takens–Bogdanov point

u̇ = v + a1u
3 + b1u

2v + c1uv
2 + d1v

3

v̇ = a2u
3 + b2u

2v + c2uv
2 + d2v

3

to the normal form (truncated at cubic order)

ẋ = y

ẏ = Px3 +Qx2y
(1)

and determine the constants P and Q as functions of the eight original constants
a1, . . . , d2. Give your choices of the undetermined coefficients α1, . . . , δ2 explicitly.

(b) The FitzHugh–Nagumo equations describe the nonlinear propagation of nerve
impulses along axons. A simplification of the FitzHugh–Nagumo model leads to
the following system of three ordinary differential equations:

ẋ = y

ẏ = −x− 2y + z +
1
3
x3

ż = − c
2
x+

d

2
z

(2)

where biological constraints imply that the parameters c and d are positive. Identify
the codimension-2 point (c∗, d∗).

(c) Sketch, in the (c, d) plane, the curves along which codimension-1 bifurcations from
the trivial solution take place.

(d) Investigate the local bifurcations from any non-trivial equilibria of (2) you find, and
add this information to your sketch.

(e) In order to investigate the dynamics near (c∗, d∗) in more detail, set c = c∗ and
d = d∗ and introduce the new variables v = z − x and w = (2v − y)/3 into the
third-order system (2), changing coordinates from (x, y, z) to (z, v, w).

Explain why v is a fast variable and so may be eliminated via either centre
manifold reduction or adiabatic elimination. Why would neither procedure yield
any quadratic terms in the expression for the centre manifold v = h(z, w) ?

(f) After a centre manifold reduction and a near-identity transformation of the type
described in part (a) have been carried out, the second-order system can be put
into the form (1).

Using your answer to part (a), carry out this centre manifold reduction to eliminate
v including only those terms needed to subsequently compute P and Q. Hence
calculate the values of P and Q for this case.
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2 Consider two-dimensional Boussinesq convection in the presence of a vertical
magnetic field, in the region 0 ≤ x ≤ L and 0 ≤ z ≤ 1. The dimensionless governing
equations for the streamfunction ψ(x, z, t), the perturbation θ(x, z, t) to the conductive
temperature profile and the magnetic flux function A(x, z, t) are:

∂∇2ψ

∂t
+
∂(ψ,∇2ψ)
∂(x, z)

= σ∇4ψ + σrR0
∂θ

∂x
+ σζQ

(
∂

∂z
(∇2A) +

∂(A,∇2A)
∂(x, z)

)
∂θ

∂t
+
∂(ψ, θ)
∂(x, z)

= ∇2θ +
∂ψ

∂x

∂A

∂t
+
∂(ψ,A)
∂(x, z)

= ζ∇2A+
∂ψ

∂z

where Q is proportional to the square of the imposed magnetic field, σ is the Prandtl
number of the fluid, ζ is the magnetic Prandtl number and R0 = β6/α2 with α = π/L
and β2 = α2 + π2. The boundary conditions are chosen for convenience: ψ = 0 on all
boundaries, θ = ∂A/∂z = 0 on z = 0, 1 and ∂θ/∂x = A = 0 on x = 0, L.

(a) Adopt the truncated representation

ψ = 2
√

2
β

α
a(t) sinαx sinπz

θ = 2
√

2
1
β
b(t) cosαx sinπz − 1

π
c(t) sin 2πz

A =
2
√

2π
αβ

d(t) sinαx cosπz +
1
α
e(t) sin 2αx

and derive the following ODEs that describe the weakly nonlinear dynamics:

ȧ = −σa+ σrb− σζqd− σζq(3−$)ed

ḃ = a− b− ac
ċ = $(−c+ ab)

ḋ = a− ζd− ae
ė = −(4−$)ζe+$ad

where $ = 4π2/β2 and q = π2Q/β4. The dots denote differentiation with respect
to the scaled time t̃ = β2t. Note that σ, ζ and $ are positive constants and $ < 4.

(b) Locate and classify the steady-state bifurcation from the trivial solution and
determine the conditions under which a Hopf bifurcation can occur. Find the
Takens–Bogdanov point in the (r, q) plane.

(c) Find r as a function of a2 on the branch of non-zero steady solutions. Assuming
a2 � ζ2, approximate your expression in the form r = 1 + q + a2r2 +O(a4). Use
the resulting expression for r2 to explain what happens to the branch of steady
solutions as $ passes through values close to 2 when ζ2 � 1.
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3 A second-order system of ODEs near a codimension-2 bifurcation is described by
the following normal form:

ẋ = y

ẏ = −λ+ µy + x2 + xy
(1)

where λ and µ are parameters.

(a) Find the equilibria and classify their local bifurcations. Sketch the lines of local
bifurcations in the (λ, µ) plane and sketch the phase portraits of the system (1)
in the regions of this plane which the local bifurcations indicate have qualitatively
different behaviour. You may assume that the Hopf bifurcation is subcritical.

(b) Adopt the scaling x = ε2u, y = ε3v, λ = ε4α, µ = ε2β and rescale time by a
factor of 1/ε. Find the resulting ODEs for u and v. In the limit ε → 0, these
ODEs have a conserved quantity H(u, v) = 1

2v
2 +αu− 1

3u
3. Show that dH/dt = 0,

sketch contours of constant H in the (u, v) plane and find the value of H which
corresponds to a homoclinic orbit in the system.

(c) By integrating around the homoclinic orbit for small ε find the relation between α
and β and hence between λ and µ at the global bifurcation, when ε is small. Show
this line of global bifurcations in your sketch of the (λ, µ) plane and, assuming that
there are no further bifurcations in the system (1), indicate the phase portraits on
either side of this line.

(d) Denote the eigenvalues at the saddle point by m− < 0 < m+. Compute the saddle
index δ = −m−/m+ near the global bifurcation and verify that it is less than 1.
Explain how this agrees with the analysis earlier in the question.
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