MATHEMATICAL TRIPOS Part III

Friday 8 June 2007 9.00 to 12.00

PAPER 9

ISOPERIMETRY AND CONCENTRATION OF MEASURE

Answer **THREE** questions There are **FIVE** questions The questions carry equal weight

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** Describe briefly the properties of the set I_X of isometries of a compact metric space (X, d). What does it mean to say that I_X acts *transitively* on X?

Suppose that I_X acts transitively on (X, d). Show that there is a unique Borel probability measure μ on X such that $\int_X f(x) d\mu(x) = \int_X f(g(x)) d\mu(x)$ for every $g \in I_X$ and $f \in C(X)$.

[You may assume that the set P(X) of Borel probability measures on X is a compact metrizable subset of $C(X)^*$ under the weak*-topology. You may assume Hall's marriage theorem: if so, you should state it clearly.]

2 What does it mean to say that a random variable X is sub-Gaussian, with exponent b? Show that a bounded random variable X is sub-Gaussian if and only if $\mathbf{E}(X) = 0$.

Suppose that X is sub-Gaussian, with exponent b. Show that $\mathbf{P}(|X| > R) \leq 2e^{-R^2/2b^2}$. Show further that $||X||_{2k} \leq b\sqrt{2k}$, for $k \geq 2$. Show that $||X||_2^3 \leq 4b^2 ||X||_1$.

[If you use Littlewood's inequality, you should prove it.]

3 Suppose that \mathcal{E} is the ellipsoid of maximum volume contained in the unit ball B_E of a *d*-dimensional normed space $(E, \|.\|_E)$, and that |.| is the inner-product norm with unit ball \mathcal{E} . State inequalities relating $\|.\|_E$ and |.|. Show that there exists a |.|-orthonormal basis (e_1, \ldots, e_d) with $\|e_i\|_E \ge 1/4$ for $1 \le i \le d/2$.

Use this orthonormal basis to identify E with \mathbf{R}^d , and let γ_d be normalized Gaussian measure on \mathbf{R}^d . Show that there is a positive constant c, which does not depend on d or $\|.\|_E$, such that

$$\int_{\mathbf{R}^d} \|x\|_E \ d\gamma_d(x) \ge c\sqrt{\log d}.$$

4 Define the volume ratio vr(E) of a finite-dimensional normed space $(E, \|.\|_E)$. Show that there exists a constant C, independent of k, such that $vr(l_1^{2k}) \leq C$.

Suppose that E has dimension 2k. Let \mathcal{E} be the ellipsoid of maximum volume contained in the unit ball B_E of $(E, \|.\|_E)$, and let |.| be the inner-product norm with unit ball \mathcal{E} . Show that there exists a constant L, independent of k and $\|.\|_E$, such that there exist two k-dimensional subspaces of E, orthogonal with respect to the inner product, on each of which

$$\|x\|_E \leqslant |x| \leqslant L \, \|x\|_E \, .$$

[You should establish any results about ϵ -nets that you need. The Euclidean ball in \mathbb{R}^{2k} has volume $\pi^k/k!$.]

(i) $m_d(\mathbf{P}, \mathbf{Q}) = \sup\{\int_X f \, d\mathbf{P} + \int_X g \, d\mathbf{Q} : f, g \in C(X), f(x) + g(y) \leq d(x, y)\};$

(ii)
$$W(\mathbf{P}, \mathbf{Q}) = \inf\{\int_{X \times X} d(x, y) d\pi(x, y) : \pi \in P(X, Y) \text{ with marginals } \mathbf{P} \text{ and } \mathbf{Q}\}.$$

Show also that they are equal to the quantities

(i)
$$m_L(\mathbf{P}, \mathbf{Q}) = \sup\{\int_X f \, d\mathbf{P} + \int_X g \, d\mathbf{Q} : f, g \in Lip(X) : f(x) + g(y) \leq d(x, y)\};$$

(i) $m_L(\mathbf{r}, \mathbf{Q}) = \sup\{\int_X f \, d\mathbf{P} - \int_X f \, d\mathbf{Q} \mid f \in Lip(X), \|f\|_L \leq 1\}.$ (iv) $\gamma(\mathbf{P}, \mathbf{Q}) = \sup\{|\int_X f \, d\mathbf{P} - \int_X f \, d\mathbf{Q}| : f \in Lip(X), \|f\|_L \leq 1\}.$

END OF PAPER