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INTRODUCTION TO QUANTUM COMPUTATION

Attempt no more than THREE questions.
There are FOUR questions in total.

The questions carry equal weight.

The following standard definitions hold throughout the paper

H =
(

1 1
1 −1

)
/
√

2

X =
(

0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

cNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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1 In this question, we define the state |ΨN
M 〉 to be a (normalized) state of N qubits

which is the uniform superposition of all computational basis states containing M | 1 〉s
and (N −M) | 0 〉s. For example,

|Ψ3
2 〉 =

1√
3

(| 110 〉+ | 101 〉+ | 011 〉).

It obeys the recursion relation

|ΨN
M 〉 =

√
N −M
N

| 0 〉|ΨN−1
M 〉 +

√
M

N
| 1 〉|ΨN−1

M−1 〉,

where the qubit which has been singled out is an arbitrary choice.

Consider N + 1 parties, labelled 0 to N , where N is odd. Each holds a single qubit
from the state |ΨN+1

(N+1)/2 〉. Party 0, Alice, also holds a single copy of an unknown pure
1-qubit state |ψ 〉 = α| 0 〉+ β| 1 〉 (|α|2 + |β|2 = 1), and wishes to transmit a copy of this
state to all the other parties, without retaining a copy herself.

(a) Prove that Alice cannot achieve this perfectly if N > 1.

Alice performs the following teleportation-like protocol, replacing the Bell pair with
the state |ΨN+1

(N+1)/2 〉 in an effort to transmit |ψ 〉 to Bob (party 1), and the others.

q0 is the qubit in |ΨN+1
(N+1)/2 〉 that Alice holds and measurement is in the compu-

tational (| 0 〉/| 1 〉) basis. Assuming that both of Alice’s measurement results are | 0 〉.

(b) What is the final state shared between all the parties 1 . . . N?

(c) What is the state ρ that Bob receives? Prove that it satisfies

〈ψ |ρ|ψ 〉 =
N + 1 + 2|α|2|β|2(N − 1)

2N
.

(d) In a teleportation protocol, the output state should be the same for all measurement
outcomes following some corrective operations. Using the following circuit identity, or
otherwise, what is the effective state that Alice teleported, and what correction should
Bob and the other parties apply if Alice gets the measurement result R0 = 0, R1 = 1?
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2 In Grover’s Search Algorithm, the target is to find one of the M � 2N solutions
f(x) = 1 , where f : {0, 1}N 7→ {0, 1}. This is typically achieved by defining two unitary
operators, each acting on N qubits,

Uf |x 〉 =
{
|x 〉 f(x) = 0
−|x 〉 f(x) = 1

Vy|x 〉 =
{
|x 〉 x 6= y
−|x 〉 x = y

,

and the algorithm proceeds to calculate

Gn|φ 〉

where G = −H⊗NV0H
⊗NUf acts on the initial state |φ 〉 = H⊗N | 0 〉.

(a) Express |φ 〉 in terms of the two states

|Ψg 〉 =
1√
M

∑
f(x)=1

|x 〉

|Ψb 〉 =
1√

2N −M

∑
f(x)=0

|x 〉

and prove that G acts as a rotation on these states.

(b) Hence give the smallest number of repetitions, n, which guarantees that we have a
probability of at least 50% of finding an x for which f(x) = 1 .

(c) If, instead, we are provided with a Vy where y 6= 0 is known, what two states | Ψ̃g 〉
and | Ψ̃b 〉 are acted on in the same way by −H⊗NVyH⊗NUf as |Ψg 〉 and |Ψb 〉 were by
G?

(d) Hence, how should you change the input state such that the algorithm still
functions?
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3 In the following, you may assume that, for some set of real numbers Jn, the
Hamiltonian

HT =
N−1∑
n=0

Jn(|n 〉〈n+ 1 |+ |n+ 1 〉〈n |)

satisfies e−iHTπ/2|n 〉 = |N − n 〉 where 〈n |m 〉 = δnm (we take ~ = 1).

Consider the Hamiltonian of 2N + 1 qubits (labelled 0 to 2N)

He =
2N−1∑
n=0

Kn

2
(XnXn+1 + YnYn+1),

where K2N−n−1 = Kn = JN−1−n for n = 0 . . . N − 2, and KN−1 = KN = J0/
√

2. Define
the notation | ñ 〉 = XN+n| 0 〉⊗2N+1 to mean the state of 2N + 1 qubits where all are in
the | 0 〉 state except for the qubit N + n, which is in state | 1 〉.

(a) Calculate the action of 1
2 (X⊗X+Y ⊗Y ) on the four basis states | 00 〉, | 01 〉, | 10 〉

and | 11 〉.

(b) Calculate He| 0̃ 〉 and H2
e | 0̃ 〉 and compare to HT | 0 〉 and H2

T | 0 〉.

(c) Hence, demonstrate a mapping from He, restricted to the subspace that governs
the evolution of | 0̃ 〉, into HT . What is the output of e−iHeπ/2| 0̃ 〉, and what is the state
when you trace out all qubits except for qubits 0 and 2N?

(d) How might you modify the setup to produce an output state between 3 of the
qubits of (| 001 〉+ | 010 〉+ | 100 〉)/

√
3, starting from an initial product state? A suitable

diagrammatic representation of your solution is acceptable.
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(a) There is a one-qubit unitary gate V for which we wish to determine the eigenvalues.
Assuming we are provided with gates controlled-V 2n for n = 0 . . . N−1, an eigenstate | vj 〉
of V which satisfies V | vj 〉 = eiφj | vj 〉, and a supply of qubits in the state (| 0 〉+ | 1 〉)/

√
2,

show how to create the state
1√
2N

2N−1∑
x=0

eiφjx|x 〉,

justifying your answer.

(b) Using the inverse Quantum Fourier Transform,

U†QFT =
1√
2N

2N−1∑
x,y=0

e−i
2πxy
2N |x 〉〈 y | ,

on the generated state, prove that the minimum probability with which we obtain the best
N -bit approximation to 2N−1φj/π is lower bounded by

4
π2
.

(c) Instead of using | vj 〉, assume we use the maximally mixed state ρ = (| 0 〉〈 0 | +
| 1 〉〈 1 |)/2. What are the possible outputs and their corresponding probabilities in this
case?

(d) If, instead, you were just given the unitary V , and a supply of ancillas on which
you can enact arbitrary single-qubit unitary rotations and measurements, how might you
determine the eigenvalues of V ? What are the advantages and disadvantages of this
method in contrast to the previous one?

END OF PAPER
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