PAPER 47

INTRODUCTION TO QUANTUM COMPUTATION

Attempt THREE questions.
There are four questions in total.
The questions are of equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 A quantum network which describes single qubit interference can be represented as follows:

(1) What is the probability $P_{0}(\phi)$ that a qubit initially in state $|0\rangle$ will be found in state $|0\rangle$ at the output if it is measured in the $\{|0\rangle,|1\rangle\}$ basis?
(2) Now suppose, that after the phase gate and before the second Hadamard gate, the qubit undergoes decoherence by interacting with an environment in state $|e\rangle$ so that:

$$
\begin{align*}
|0\rangle|e\rangle & \mapsto|0\rangle\left|e_{0}\right\rangle, \tag{1}\\
|1\rangle|e\rangle & \mapsto|1\rangle\left|e_{1}\right\rangle, \tag{2}
\end{align*}
$$

where $\left|e_{0}\right\rangle$ and $\left|e_{1}\right\rangle$ are the new states of the environment which are normalized but not necessarily orthogonal. The decoherence modifies $P_{0}(\phi)$ which becomes a function of ϕ and of the scalar product $\left\langle e_{0} \mid e_{1}\right\rangle$. Writing $\left\langle e_{0} \mid e_{1}\right\rangle=v e^{i \alpha}$ express P_{0} as a function of ϕ, v, and α.
(3) Suppose the decoherence takes place between the first Hadamard gate and the phase gate, how different is the expression for $P_{0}(\phi, v, \alpha)$?
(4) Deutsch's algorithm with an oracle $f:\{0,1\} \mapsto\{0,1\}$, is implemented by the following network, where the central two-qubit gate is the oracle implementing the operation, $|x\rangle|y\rangle \mapsto|x\rangle|x \oplus f(y)\rangle$ and $|\overline{0}\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$:

Assume that only the first (top) qubit is affected by decoherence as described by Eqs.(1) and (2). How reliably can you tell whether f is constant or balanced?

2 The Fourier transform over the Abelian group $\left(\mathbb{Z}_{2}\right)^{n}$, also known as the Hadamard transform, is defined as

$$
|x\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle,
$$

where $x, y \in\{0,1\}^{n}$ and the group operation $x \cdot y$ is defined as

$$
x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}(\bmod 2)
$$

(1) Sketch the quantum network which affects the Hadamard transform and explain why it is often useful as the first operation in quantum algorithms.
(2) Suppose the Hadamard transform acts on n qubits in state

$$
\left|\Psi_{I N}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}(-1)^{a \cdot x}|x\rangle
$$

where $a \in\{0,1\}^{n}$. What is the output state?
(3) Suppose you are given an oracle $f:\{0,1\}^{n} \mapsto\{0,1\}$ such that $f(x)=a \cdot x$ and the parameter $a \in\{0,1\}^{n}$ is unknown. Your task is to find a.

- How many calls to the oracle are needed in the classical case?
- Sketch a quantum network which outputs a and which calls the oracle only once.
$3 \quad$ Let A and B be two 2×2 matrices. The inner product of A and B is defined as $\frac{1}{2} \operatorname{Tr}\left(A^{\dagger} B\right)$. Show that the identity $\sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, the bit flip $\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, the phase flip $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, and the bit and phase flip $\sigma_{2}=i \sigma_{1} \sigma_{3}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ form an orthonormal basis in a space of 2×2 matrices, i.e. any 2×2 matrix E can be written as

$$
\begin{equation*}
E=\frac{1}{2} \sum_{k=0}^{3} \operatorname{Tr}\left(\sigma_{k} E\right) \sigma_{k} \tag{3}
\end{equation*}
$$

Suppose error \mathcal{E} entangles a qubit with its environment according to the rules

$$
\begin{aligned}
&|0\rangle|e\rangle \mapsto|0\rangle\left|e_{00}\right\rangle+|1\rangle\left|e_{01}\right\rangle \\
&|1\rangle|e\rangle \mapsto|0\rangle\left|e_{10}\right\rangle+|1\rangle\left|e_{11}\right\rangle,
\end{aligned}
$$

where $|e\rangle,\left|e_{n m}\right\rangle, n, m=0,1$ are the states of the environment which are not necessarily orthogonal or normalized. The r.h.s. of the two equations above can be conveniently written in the matrix form as

$$
\left(\begin{array}{ll}
\left|e_{00}\right\rangle & \left|e_{01}\right\rangle \tag{4}\\
\left|e_{10}\right\rangle & \left|e_{11}\right\rangle
\end{array}\right)\binom{|0\rangle}{|1\rangle}
$$

Using Eq.(4) together with Eq.(3), or otherwise, show that for any pure state of the qubit $|\Psi\rangle$, the action of the error \mathcal{E} can be represented as

$$
|\Psi\rangle|e\rangle \mapsto \sum_{k=0}^{3}\left(\sigma_{k}|\Psi\rangle\right)\left|e_{k}\right\rangle,
$$

for some states of the environment $\left|e_{k}\right\rangle$ which are not necessarily orthonormal. Express $\left|e_{k}\right\rangle$ in terms of $\left|e_{m n}\right\rangle$.

Suppose we are given a noisy single qubit channel in which the probability of a phase flip error is q and no other errors occur. Consider an arrangement, shown in the diagram below, in which the qubit in some unknown state of the form $|\chi\rangle=\alpha|0\rangle+\beta|1\rangle$ is encoded into a three qubit state

$$
\alpha|\overline{0}\rangle|\overline{0}\rangle|\overline{0}\rangle+\beta|\overline{1}\rangle|\overline{1}\rangle|\overline{1}\rangle,
$$

where $|\overline{0}\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and $|\overline{1}\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$. The three qubits are transmitted through the channel and subsequently decoded.

What is the probability of successful recovery of the input state $\alpha|0\rangle+\beta|1\rangle$?

4 The quantum Fourier transform on the group \mathbb{Z}_{N} acts on a Hilbert space of dimension $N=2^{n}$. It is defined by linearity and its action on an orthonormal basis, $\{|0\rangle,|1\rangle,|2\rangle, \ldots,|N-1\rangle\}$:

$$
Q F_{n}: \quad|x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{\frac{2 \pi i x y}{N}}|y\rangle .
$$

The single qubit unitary transformation R_{k} is defined as

$$
R_{k}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{2 \pi i}{2^{k}}}
\end{array}\right) .
$$

(1) Show that $Q F_{n}$ can be implemented by a quantum network of size $O\left(n^{2}\right)$ built from Hadamard gates and controlled R_{k} gates for $k=1,2, \ldots, n$.
(2) If $U_{1}, U_{2}, \ldots U_{m}$ and $V_{1}, V_{2}, \ldots V_{m}$ are unitary operators with $\left\|U_{k}-V_{k}\right\|<\epsilon$ for $k=1,2, \ldots, m$, show that

$$
\left\|U_{1} U_{2} \ldots U_{m}-V_{1} V_{2} \ldots V_{m}\right\|<m \epsilon,
$$

where the operator norm is defined as, $\|A\|^{2}=\sup _{\|\psi\|=1}\langle\psi| A^{+} A|\psi\rangle$.
Suppose that an approximate $Q F_{n}$ network is built with approximate Hadamard and approximate controlled R_{k} gates which implement unitary operations G^{\prime} that approximate the specified gate operators G in the sense that

$$
\left\|G^{\prime}-G\right\| \leq \frac{1}{n^{4}}
$$

Show that the resulting network operation U_{n} satisfies

$$
\left\|U_{n}-Q F_{n}\right\|=0\left(\frac{1}{n^{2}}\right) .
$$

Comment briefly on the practical implications.

