

## MATHEMATICAL TRIPOS Part III

Thursday 2 June, 2005 9 to 12

# PAPER 6

#### INTRODUCTION TO FUNCTIONAL ANALYSIS

Attempt **THREE** questions.

There are **FOUR** questions in total.

The questions carry equal weight.

#### $STATIONERY\ REQUIREMENTS$

Cover sheet Treasury tag Script paper SPECIAL REQUIREMENTS

None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.



- 1 (i) State and prove the Baire category theorem.
- (ii) By using the Baire category theorem, or otherwise, show that we can find an  $\mathbf{x} \in \mathbb{R}^n$  such that

$$\sum_{j=1}^{n} k_j x_j \neq k_{n+1}$$

whenever  $k_1, k_2, \ldots, k_{n+1}$  are integers, not all of which are zero.

(iii) Show that, given any K>0 we can find a continuous function  $f:\mathbb{T}\to\mathbb{R}$  such that  $\|f\|_{\infty}\leqslant 1$  but the N-th partial Fourier sum  $S_N(f,0)$  satisfies

$$|S_N(f,0)| > K$$

for some N.

(iv) Show that there exists a continuous function whose Fourier series diverges at 0.



**2** Let X be a real vector space and  $p, q: X \to \mathbb{R}$  be functions such that  $p(\lambda x) = \lambda p(x)$ ,  $q(\lambda x) = \lambda q(x)$  for all  $\lambda \in \mathbb{R}$  with  $\lambda \geq 0$  and all  $x \in X$ , whilst

$$p(x+y) \leqslant p(x) + p(y), \ q(x) + q(y) \leqslant q(x+y)$$

for all  $x, y \in X$ .

(i) Suppose that Y is a subspace of X and  $S: Y \to \mathbb{R}$  a linear function such that

$$S(y) \leqslant p(x+y) - q(x)$$

for all  $x \in X$ ,  $y \in Y$ . Show that

$$S(y') - p(x' + y' - z) + q(x') \le -S(y) + p(x + y + z) - q(x)$$

for all  $x, x', z \in X$  and  $y, y' \in Y$ .

(ii) Suppose that  $Y_0$  is a subspace of X and  $T_0: Y_0 \to \mathbb{R}$  a linear function such that

$$T_0(y) \leqslant p(x+y) - q(x)$$

for all  $x \in X$ ,  $y \in Y_0$ . Show that there exists a linear function  $T: X \to \mathbb{R}$  such that

$$T(y) \leqslant p(x+y) - q(x)$$

for all  $x, y \in X$  and  $Tu = T_0u$  for all  $u \in Y_0$ . Show that

$$q(x) \leqslant T(x) \leqslant p(x)$$

for all  $x \in X$ .

(iii) Suppose that  $p(x) \ge q(x)$  for all  $x \in X$ . Show that there exists a linear function (possibly the zero function)  $U: X \to \mathbb{R}$  such that

$$q(x) \leqslant U(x) \leqslant p(x)$$

for all  $x \in X$ .



**3** Let B be a commutative Banach algebra with a unit. Develop the theory of the resolvent of an element  $x \in B$  up to and including the formula

$$\rho(x) = \sup\{|\lambda| : \lambda e - x \text{ is not invertible}\}\$$

for the spectral radius.

Give an example of a B and an  $x \in B$  for which  $\rho(x) = 0$  although  $x \neq 0$ . Give an example of a B and an  $x \in B$  for which  $\rho(x) = ||x||_B = 1$ .

[You may assume results from the theory of vector valued integration but not from the theory of Banach algebra valued analytic functions.]

Let C([-1,1]) be the space of real valued continuous functions on [-1,1] under the uniform norm. Consider the subspace  $\mathcal{P}_n$  of real polynomials of degree at most n. You may assume that, if T is a linear map  $\mathcal{P}_n \to \mathbb{R}$ , with ||T|| = 1, then, given  $\epsilon > 0$ , we can find an  $N \geqslant 1$  and  $\lambda_1, \lambda_2, \ldots \lambda_N \in \mathbb{R}$  with  $\sum_{j=1}^N |\lambda_j| = 1$  and  $x_1, x_2, \ldots x_N \in [-1,1]$  such that

$$\left| TP - \sum_{j=1}^{N} \lambda_j P(x_j) \right| < \epsilon.$$

Show, proving the results (such as Caratheory's theorem) that you need, that, if P is a real polynomial of degree at most n and  $u \notin [-1, 1]$ , then

$$|P(u)|\leqslant \sup_{x\in [-1,1]}|P(x)||T_n(u)|$$

where  $T_n$  is the Tchebychev polynomial of degree n.

### END OF PAPER