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1 (i) State and prove the Baire category theorem.

(ii) By using the Baire category theorem, or otherwise, show that we can find an
x ∈ Rn such that

n∑
j=1

kjxj 6= kn+1

whenever k1, k2, . . . , kn+1 are integers, not all of which are zero.

(iii) Show that, given any K > 0 we can find a continuous function f : T → R such
that ‖f‖∞ 6 1 but the N -th partial Fourier sum SN (f, 0) satisfies

|SN (f, 0)| > K

for some N .

(iv) Show that there exists a continuous function whose Fourier series diverges at
0.
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2 Let X be a real vector space and p, q : X → R be functions such that p(λx) = λp(x),
q(λx) = λq(x) for all λ ∈ R with λ > 0 and all x ∈ X, whilst

p(x + y) 6 p(x) + p(y), q(x) + q(y) 6 q(x + y)

for all x, y ∈ X.

(i) Suppose that Y is a subspace of X and S : Y → R a linear function such that

S(y) 6 p(x + y)− q(x)

for all x ∈ X, y ∈ Y . Show that

S(y′)− p(x′ + y′ − z) + q(x′) 6 −S(y) + p(x + y + z)− q(x)

for all x, x′, z ∈ X and y, y′ ∈ Y .

(ii) Suppose that Y0 is a subspace of X and T0 : Y0 → R a linear function such that

T0(y) 6 p(x + y)− q(x)

for all x ∈ X, y ∈ Y0. Show that there exists a linear function T : X → R such that

T (y) 6 p(x + y)− q(x)

for all x, y ∈ X and Tu = T0u for all u ∈ Y0. Show that

q(x) 6 T (x) 6 p(x)

for all x ∈ X.

(iii) Suppose that p(x) > q(x) for all x ∈ X. Show that there exists a linear function
(possibly the zero function) U : X → R such that

q(x) 6 U(x) 6 p(x)

for all x ∈ X.
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3 Let B be a commutative Banach algebra with a unit. Develop the theory of the
resolvent of an element x ∈ B up to and including the formula

ρ(x) = sup{|λ| : λe− x is not invertible}

for the spectral radius.

Give an example of a B and an x ∈ B for which ρ(x) = 0 although x 6= 0. Give an
example of a B and an x ∈ B for which ρ(x) = ‖x‖B = 1.

[You may assume results from the theory of vector valued integration but not from
the theory of Banach algebra valued analytic functions.]

4 Let C([−1, 1]) be the space of real valued continuous functions on [−1, 1] under the
uniform norm. Consider the subspace Pn of real polynomials of degree at most n. You
may assume that, if T is a linear map Pn → R, with ‖T‖ = 1, then, given ε > 0, we can
find an N > 1 and λ1, λ2, . . . λN ∈ R with

∑N
j=1 |λj | = 1 and x1, x2, . . . xN ∈ [−1, 1]

such that ∣∣∣∣∣TP −
N∑

j=1

λjP (xj)

∣∣∣∣∣ < ε.

Show, proving the results (such as Caratheory’s theorem) that you need, that, if P
is a real polynomial of degree at most n and u /∈ [−1, 1], then

|P (u)| 6 sup
x∈[−1,1]

|P (x)||Tn(u)|

where Tn is the Tchebychev polynomial of degree n.
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Paper 6


	Rubric
	1
	2
	3
	4

