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1 Describe the bond percolation model with parameter p on the square lattice Z2.
What does it mean to say that an event associated with this process is increasing?

State the (Harris)–FKG inequality and the disjoint-occurrence inequality for two
increasing events.

Let Λn = [−n, n]2 and ∂Λn = Λn \ Λn−1, and let gk = Pp(0 ↔ ∂Λk) be the
probability of an open path in the process joining the origin to some vertex of ∂Λk. Show
that

gn 6 gn−m

∑
x∈∂Λm

Pp(0 ↔ x), m 6 n.

Let χ(p) be the mean size of the open cluster containing the origin, and assume
that p is such that χ(p) < ∞. Show that there exists γ > 0 such that gk 6 e−γk for all k.

2 Let Td be a homogeneous infinite tree in which each vertex has degree d + 1. Let
ξA
t be the set of infected vertices at time t in the contact model on Td with infection rate

λ and death rate 1, under the assumption that the infected set at time 0 is the non-empty
finite set A. The corresponding probability measure is written Pλ, with expectation Eλ.

Let 0 < ρ < 1 and define νρ(B) = ρ|B|, for a set B of vertices. Show that

d

dt
Eλ

(
νρ

(
ξA
t

)) ∣∣∣∣
t=0

6 (1− ρ)νρ(A)
[
|A|
ρ

(1− λρ(d− 1))− 2λ

]
.

Deduce that Eλ(νρ(ξA
t )) is non-increasing in t, if ρλ(d− 1) > 1.

Let λ1 = inf{λ : Pλ(ξ{x}
t 6= φ for all t) > 0}, where x denotes a vertex of the tree.

Show that λ1 < 1/(d− 1).

To each vertex x of Td is allocated an integer g(x) in such a way that: if x, y are
neighbours, then g(y) = g(x) ± 1, and furthermore each x has exactly one neighbour y
with g(y) = g(x) − 1. By considering the function wρ(A) =

∑
x∈A ρg(x) or otherwise,

where 0 < ρ < 1 and A ⊆ V , show that

λ2 = inf{λ : Pλ(x ∈ ξ
{x}
t for unbounded t) > 0}

satisfies λ2 > 1/{2
√

d}.
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3 Let G = (V,E) be a finite graph and let 0 < p < 1 and q ∈ {2, 3, . . .}. On the
product sample space {1, 2, . . . , q}V × {0, 1}E we define the probability mass function

µ(σ, ω) =
1
Z

∏
e∈E

{(1− p)δω(e),0 + pδω(e),1δe(σ)},

for σ ∈ {1, 2, . . . , q}V , ω ∈ {0, 1}E , where δr,s is the Kronecker delta, and δe(σ) = δσ(x),σ(y)

where e is the edge with endvertices x and y. Here Z is a constant depending on p and q.

Show that the marginal mass functions µ1(σ) =
∑

ω µ(σ, ω), µ2(ω) =
∑

σ µ(σ, ω)
are given by the Potts and random-cluster measures

µ1(σ) =
1
Z ′ exp

(
β
∑

e

δe(σ)

)
, where e−β = 1− p,

µ2(ω) =
1

Z ′′

{∏
e

pω(e)(1− p)1−ω(e)

}
qk(ω),

for constants Z ′, Z ′′, where k(ω) is the number of open clusters under ω.

Find the conditional mass function µ(σ |ω) of σ given the edge-configuration ω.
Deduce that, for x, y ∈ V ,

µ1(σ(x) = σ(y))− 1
q

= (1− q−1) µ2(x ↔ y),

where {x ↔ y} is the event that ω contains an open path from x to y.

4 Let G = (V,E) be a finite regular graph (i.e., each vertex has the same number of
neighbours). Particles inhabit the vertices in V , and each vertex may be occupied by no
more than one particle at any time. Each particle jumps at rate 1, and when it jumps it
does so to a neighbour chosen uniformly at random. If this neighbour is already occupied
by a particle then the jump does not take place. You may assume the maximum amount
of independence between jumps.

Let ηA
t be the set of vertices occupied by the particles at time t, where A is the set

of their initial positions. Show that

P
(
ηA

t ⊇ B
)

= P
(
ηB

t ⊆ A
)

for A,B ⊆ V .

For 0 6 ρ 6 1, let µρ be product measure on the configuration space {0, 1}V

with density ρ; i.e., each vertex is occupied with probability ρ, independently of all other
vertices. Show that, for all 0 6 ρ 6 1, the measure µρ is invariant for the above exclusion
process.
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