PAPER 7

HARMONIC ANALYSIS

Attempt THREE questions.
There are five questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 What does it mean for a function u on an open subset Ω of \mathbf{R}^{d+1} to be harmonic? State a characterisation of harmonicity in terms of averages.

Show that there exists an isometry P from the Banach space $M\left(\mathbf{R}^{d}\right)$ of bounded Borel measures on \mathbf{R}^{d} onto $h^{1}\left(H^{d+1}\right)$, the Banach space of harmonic functions u on the upper half-space H^{d+1} for which

$$
\|u\|_{h^{1}}=\sup _{t>0}\left\{\int_{\mathbf{R}^{d}}|u(x, t)| d \lambda(x)\right\}<\infty .
$$

Show that there exists a constant K_{d} such that if $u \in h^{1}\left(\mathbf{R}^{d+1}\right)$ then

$$
|u(x, t)| \leqslant K_{d}\|u\|_{h^{1}} / t^{d}
$$

2 Suppose that ν is a Borel measure on \mathbf{R}^{d}. Define the Hardy-Littlewood maximal function $m(\nu)$ and the related maximal function $m_{u}(\nu)$, and show that they are equivalent.

Suppose that $\alpha>0$, and let $E_{\alpha}=\left\{x: m_{u}(\nu)(x)>\alpha\right\}$. Show that $\lambda\left(E_{\alpha}\right) \leqslant$ $\left(3^{d} / \alpha\right) \nu\left(E_{\alpha}\right)$.

Suppose that ϕ is a non-negative strictly decreasing continuous function on $[0, \infty)$ for which $\int_{\mathbf{R}^{d}} \phi(|x|) d \lambda(x)=1$.

Show that if $f \in L^{1}\left(\mathbf{R}^{d}\right)$ then

$$
\frac{1}{t^{d}}\left|\int_{\mathbf{R}^{d}} \phi\left(\frac{|x-y|}{t}\right) f(y) d \lambda(y)\right| \leqslant m(f)(x) .
$$

Given an example of an application of this result.

3 Let $\left(g_{n}\right)$ be an L^{1}-bounded martingale on $(0,1]^{d}$ with respect to the dyadic filtration $\left(F_{n}\right)$ for which $g^{*}=\sup _{n}\left|g_{n}\right| \in L^{1}$. Show that there exists $g \in L^{1}$ such that $g_{n}=E\left(g \mid F_{n}\right)$ for each n and show that $g_{n} \rightarrow g$ in L^{1}-norm and almost everywhere.

Now suppose that $\left(f_{n}\right)$ is an L^{1}-bounded martingale. Let $N>0$, and let $\tau(x)=$ $\inf \left\{j:\left|f_{j}(x)\right| \geqslant N\right\}$. Let $g_{n}=f_{\tau \wedge n}$ and let $Z(x)=\left|f_{\tau(x)}\right|$ if $\tau(x)<\infty$, and let $Z(x)=0$ otherwise. Show that $\left(g_{n}\right)$ is a martingale, that $g^{*} \leqslant Z \vee N$ and that $Z \vee N \in L^{1}$. Use this to show that f_{n} converges almost everywhere.
[You may assume Doob's Lemma.]
$4 \quad$ Suppose that K is a function in $L^{2}\left(\mathbf{R}^{d}\right) \cap L^{\infty}\left(\mathbf{R}^{d}\right)$ which satisfies

$$
\int_{|x|>2|y|}|K(x-y)-K(x)| d x \leqslant C \text { for all } y \neq 0
$$

and which has a bounded Fourier transform. If $f \in L^{1}+L^{2}$, let

$$
T(f)(x)=\int K(x-y) f(y) d y
$$

(i) Show that if $e=\sum_{n=1}^{\infty} e_{n}$, where the $\left(e_{n}\right)$ are disjointly supported, then $|T(e)| \leqslant \sum_{n=1}^{\infty}\left|T\left(e_{n}\right)\right|$.
(ii) Show that there exists a constant L such that if $f \in L^{1}$ is supported in a cube Q and $\int_{Q} f(x) d x=0$, and \hat{Q} is the cube with the same centre as Q but with side length L times as big, then

$$
\int_{C(\hat{Q})}|T(f)(x)| d x \leqslant C\|f\|_{1}
$$

where $C(\hat{Q})$ is the complement of \hat{Q}.
(iii) Show that T is of weak type $(1,1)$.
[You may assume Doob's Lemma, and the Martingale Convergence Theorem.]
$5 \quad$ Suppose that f is an analytic function on $\mathbf{C}^{+}=\{z=x+i y \in \mathbf{C}: y>0\}$ for which

$$
\sup _{y>0} \int_{-\infty}^{\infty}|f(x+i y)| d x<\infty .
$$

Let $f^{*}(x)=\sup \left\{\left|f\left(x^{\prime}+i y\right)\right|: y>0,\left|x-x^{\prime}\right| \leqslant y\right\}$. Show that $\int_{-\infty}^{\infty} f^{*}(x) d x<\infty$.
Explain how this is used to prove the F. and M. Riesz theorem.

