

MATHEMATICAL TRIPOS Part III

Thursday 30 May 2002 9 to 12

PAPER 8

HARMONIC ANALYSIS

Attempt **THREE** questions There are **five** questions in total The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 What does it mean to say that a sublinear mapping T from a normed space E into $L^0(\mathbf{R}^d)$ is of weak type (E,q)?

State and prove a theorem where a weak type property gives a sufficient condition for convergence almost everywhere.

Suppose that $\nu \in M(\mathbf{R}^d)$, the Banach space of bounded signed measures on \mathbf{R}^d . Let $m_u(\nu)(x) = \sup(|\nu|(U)/\lambda(U))$, where the supremum is taken over all open balls U to which x belongs. Show that m_u is of weak type $(M(\mathbf{R}^d), 1)$.

Suppose that $f \in L^1(\mathbf{R})$, and let $F(x) = \int_{-\infty}^x f(t) dt$. Show that F is differentiable almost everywhere, with derivative f.

2 Suppose that f_1 , f_2 and g are non-negative measurable functions on a σ -finite measure space (X, Σ, μ) and that $\int_X g^p d\mu < \infty$, where 1 . Let <math>1/p + 1/q = 1.

(i) Suppose that

$$\mu(f_1 > \alpha) < \infty$$
 and $\alpha \mu(f_1 > \alpha) \leqslant \int_{(g > \alpha)} g \, d\mu$ for each $\alpha > 0$.

Show that $\int_X f_1^p d\mu \leq q \int_X g^p d\mu$.

(ii) Suppose that

$$\mu(f_2 > \alpha) < \infty$$
 and $\alpha \mu(f_2 > \alpha) \leqslant \int_{(f_2 > \alpha)} g \, d\mu$ for each $\alpha > 0$.

Use (i) to show that $\int_X f_2^p d\mu < 2^p q \int_X g^p d\mu$.

Show further that $\int_X f_2^p d\mu < q^p \int_X g^p d\mu$.

(iii) Explain how these results can be applied to non-negative submartingales.

3 Suppose that K is a Calderón-Zygmund singular kernel on \mathbf{R}^d : that is, K is a measurable function on \mathbf{R}^d satisfying

(S1) there exists A such that $|K(x)| \leq A|x|^{-d}$ for $x \neq 0$;

(S2) there exists B such that $\int_{|x|>2|y|} |K(x-y) - K(x)| d\lambda(x) \leq B$ for all $y \neq 0$;

(S3) $\int_{r < |x| < R} K(x) d\lambda(x) = 0$ for $0 < r < R < \infty$.

Let $K_{\epsilon} = K\chi_{(|x|>\epsilon)}$. Show that the set of Fourier transforms of the functions K_{ϵ} is bounded in $L^{\infty}(\mathbf{R}^d)$. Show that if $f \in L^2(\mathbf{R}^d)$ then $T_{\epsilon}(f) = K_{\epsilon} * f$ converges in norm, to T(f), say.

Suppose that ϕ is a bump function on \mathbf{R}^d , and that $\phi_{\epsilon}(x) = \epsilon^{-d}\phi(x/\epsilon)$. Show that $T(\phi_{\epsilon}) * f \to T(f)$ in norm and almost everywhere, as $\epsilon \to 0$.

[You may assume standard approximate identity convergence results.]

Paper 8

4 For $0 < \alpha < d$, let $R^{(\alpha)}(x) = C_{\alpha}|x|^{\alpha-d}$ be the Riesz potential on \mathbf{R}^d , where C_{α} is chosen so that the Fourier transform is $FR^{(\alpha)}(\xi) = (2\pi|\xi|)^{-\alpha}$. Suppose that $1 and that <math>1/q = 1/p - \alpha/d$. Show that if $f \in L^p(\mathbf{R}^d)$ then

$$I_{\alpha}(f)(x) = C_{\alpha} \int_{\mathbf{R}^d} |x - y|^{\alpha - d} f(y) \, dy$$

is defined almost everywhere, and that there exists a constant A such that $||I_{\alpha}(f)||_q \leq A ||f||_p$ for all $f \in L^p(\mathbf{R}^d)$.

[You may quote any Marcinkiewicz interpolation theorem that you need.]

Show that given 1 there is no other index <math display="inline">q for which such an inequality holds.

Explain how this result can be used to show that the Sobolev space $L_1^p(\mathbf{R}^d)$ is continuously embedded in $L^{q_1}(\mathbf{R}^d)$, where $1/q_1 = 1/p - 1/d$.

5 Let f and s_1, \ldots, s_d be non-negative measurable functions on \mathbf{R}^d which satisfy

$$f(x) \leqslant \int_{-\infty}^{\infty} s_j(x_1, \dots, x_{j-1}, t, x_{j+1}, \dots, x_d) \, d\lambda(t)$$

for all $x = (x_1, \ldots, x_d) \in \mathbf{R}^d$. Show that

$$||f||_{d/(d-1)} \leq \left[\prod_{j=1}^{d} ||s_j||_1\right]^{1/d}.$$

(i) Show that the Sobolev space $L_1^1(\mathbf{R}^d)$ embeds continuously in $L^{d/(d-1)}(\mathbf{R}^d)$.

(ii) K is a compact subset of \mathbf{R}^d and S_1, \ldots, S_d are the images of K under the orthogonal projections onto the d co-ordinate planes. Show that

$$\lambda_d(K)^{d-1} \leqslant \prod_{j=1}^d \lambda_{d-1}(S_j),$$

where λ_r is *r*-dimensional Lebesgue measure.

Paper 8