

MATHEMATICAL TRIPOS Part III

Monday 13 June, 2005 1.30 to 4.30

PAPER 4

GROUPS OF LIE TYPE

Attempt **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 (i) Let F_{q^2} be a finite field with q^2 elements and $\bar{}$ be the non-trivial automorphism of F_{q^2} , which fixes its subfield F_q pointwise. Let $V = F_{q^2}^n$, $n \ge 2$, and let B = (,) be a non-degenerate unitary form on V. Show that there exists an orthonormal basis of V with respect to B. Define the unitary group $U_n(q^2)$.

(ii) Show that V has a basis

 $e_1, \ldots, e_m, f_1, \ldots, f_m$, if n = 2m,

 $e_1, \ldots, e_m, f_1, \ldots, f_m, d$ if n = 2m + 1,

such that $(e_i, e_j) = (f_i, f_j) = (e_i, d) = (f_i, d) = 0$ for all $i, j; (e_i, f_j) = 0$ for $i \neq j$, (d, d) = 1, and $(e_i, f_i) = 1$ for all i. (Hint: Let v_1, \ldots, v_n be an orthonormal basis and let ζ be a root of the polynomial $x^2 - x - 1$. Consider $e_1 = v_1 + \zeta v_2$, $f_1 = \zeta v_1 + v_2$.)

2 (i) Let Φ be a system of roots. For $r, s \in \Phi$, let θ_{rs} be the angle between r and s. Show that θ_{rs} is one of $0, \pi/6, \pi/4, \pi/3, \pi/2, 2\pi/3, 3\pi/4, 5\pi/6, \pi$. For each value provide an example of a root system, which contains a pair of roots with the given angle.

(ii) Assume that r and s are not orthogonal. What can you say about their relative lengths?

(iii) Show that any root system of rank 2 is equivalent to one of the following systems: $A_1 + A_1$, A_2 , B_2 , G_2 .

(iv) Explain what is meant by the Dynkin diagram of a root system. Write briefly on the classification of indecomposable root systems. Include the corresponding Dynkin diagrams in your answer.

3 Let K be a field.

(i) Prove that $SL_2(K)$ is generated by matrices

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix},$$

where t, s run through K.

(ii) Prove that the Chevalley group $A_1(K)$ is isomorphic to $PSL_2(K)$. Give a detailed proof for $K = \mathbb{C}$ and outline briefly the argument for a general field.

Paper 4

3

4 Let \mathcal{L} be a simple complex Lie algebra.

(i) For each element x of \mathcal{L} define a map ad $x : \mathcal{L} \to \mathcal{L}$ by (ad x)(y) = [x, y]. Show that ad x is a derivation of \mathcal{L} .

(ii) Assume that $\operatorname{ad} x$ is nilpotent. Give the definition of the map $\exp(\operatorname{ad} x)$ and show that $\exp(\operatorname{ad} x)$ is an automorphism of \mathcal{L} .

(iii) Assume that $\operatorname{ad} x$ is nilpotent. Let θ be an automorphism of \mathcal{L} . Show that

$$\theta \exp(\operatorname{ad} x)\theta^{-1} = \exp(\operatorname{ad} \theta x).$$

(iv) Show that $\operatorname{ad} x.\operatorname{ad} y - \operatorname{ad} y.\operatorname{ad} x = \operatorname{ad} [x, y].$

(v) Let $\{h_s, e_r : s \in \Pi, r \in \Phi\}$ be a Chevalley basis of \mathcal{L} . For a complex number t, let $x_r(t) = \exp(t \operatorname{ad} e_r)$. Let r and s be two linearly independent roots such that r + s is not a root. Show that

$$x_s(u)^{-1}x_r(t)^{-1}x_s(u)x_r(t) = 1.$$

(vi) Assume that all roots in Φ are of the same length. Let r and s be two roots such that r + s is also a root. Define $N_{r,s}$ by $[e_r, e_s] = N_{r,s}e_{r+s}$. Prove the following special case of the Chevalley commutator formula:

$$x_s(u)^{-1}x_r(t)^{-1}x_s(u)x_r(t) = x_{r+s}(-N_{r,s}tu).$$

4

5 (i) Let A be an $n \times n$ matrix over C. Let \mathcal{L} be the set consisting of all $n \times n$ matrices T that satisfy

$$T^{tr}A + AT = 0.$$

(Here T^{tr} is the transpose of T.) Let $[T_1, T_2] = T_1T_2 - T_2T_1$. Prove that \mathcal{L} , with the Lie bracket [,], is a Lie algebra.

(ii) Let T be a matrix satisfying the above condition. Assume that T is nilpotent, i.e., $T^m=0$ for some m. Let

$$\exp(T) = \sum_{k=0}^{m-1} \frac{T^k}{k!}.$$

Prove that

$$(\exp T)^{tr}A\exp(T) = A$$

(iii) Let n = 2l and

$$A = \begin{pmatrix} 0 & I_l \\ -I_l & 0 \end{pmatrix},$$

where I_l is the identity matrix of size l. Show that $T \in \mathcal{L}$ if and only if

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix},$$

where $T_{22} = -T_{11}^{tr}$, and T_{12} , T_{21} are symmetric $l \times l$ matrices.

Let H be the set of diagonal matrices in \mathcal{L} . Assuming that H is a Cartan subalgebra of \mathcal{L} find the Cartan decomposition of \mathcal{L} :

$$\mathcal{L} = H \oplus \bigoplus_r \mathbf{C} e_r.$$

(You must define the corresponding elements e_r).

For $h = \text{diag}(\lambda_1, \ldots, \lambda_l, -\lambda_1, \ldots, -\lambda_l) \in H$, evaluate $[h, e_r]$ explicitly.

END OF PAPER

Paper 4