

MATHEMATICAL TRIPOS Part III

Friday 3 June, 2005 1.30 to 3.30

PAPER 11

GRAPHS AND HYPERGRAPHS

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Let $r \in \mathbb{N}$ and $\epsilon > 0$. Prove that there exist $d(r, \epsilon)$ and $n_0(r, \epsilon)$ such that if G is a graph with $|G| = n \ge n_0$ and $\delta(G) \ge (1 - 1/r + \epsilon)n$ then $K_{r+1}(t) \subset G$, where $t = \lfloor d \log n \rfloor$.

State the Erdős-Stone theorem and explain how it follows from the result just proved.

Let F be the graph of order 6 formed by removing 3 independent edges from K_6 . Let $ex(n; H) = max\{e(G) : |G| = n, F \not\subset G\}$. What is $\lim_{n\to\infty} ex(n; H) / \binom{n}{2}$?

Show that $ex(n; H) > t_2(n)$ for $n \ge 3$, where $t_2(n)$ is the size of the bipartite Turán graph $T_2(n)$.

2 Prove Szemerédi's Regularity Lemma. [You may assume the definition of ϵ -uniformity, that if $U' \subset U$ and $W' \subset W$ satisfy $|U'| \ge (1-\delta)|U|$ and $|W'| \ge (1-\delta)|W|$ then $|d(U', W') - d(U, W)| \le 2\delta$, and also any quantitative form of the Cauchy-Schwarz inequality that you need.]

Let G be a graph of order n with $n^2/6$ edges. Show that there exists c > 0 such that V(G) contains a 1/8-uniform pair of subsets (U, W) with d(U, W) > 1/4 and $|U| = |W| \ge cn$.

3 Either prove that every oriented tree of order n is contained in every tournament of order 3n-3, but that not every oriented tree of order n is contained in every tournament of order 2n-3,

Or prove that every strong digraph D is spanned by $\alpha(D)$ circuits, but never by $\alpha(D) - 1$ circuits. [You may assume Dilworth's theorem, and that every strong digraph has a coherent ordering.]

4 Let *F* be the Fano plane. Describe, making clear the main ideas, a proof that $ex(n; F) = \binom{n}{3} - \binom{\lfloor n/2 \rfloor}{3} - \binom{\lceil n/2 \rceil}{3}$.

END OF PAPER