

MATHEMATICAL TRIPOS Part III

Wednesday 8 June, 2005 1.30 to 4.30

PAPER 19

GEOMETRISATION OF 3-MANIFOLDS

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Let k be a knot in S^3 . Obtain a presentation of the knot group $\pi_1(S^3 - k)$. Apply the same method to the 3-component link l (the Borromean rings) illustrated below:

Show that $\pi_1(S^3 - l)$ is generated by x_1, x_2, x_3 subject to the relations that x_1 commutes with the commutator $[x_2^{-1}, x_3]$ and x_2 with the commutator $[x_3^{-1}, x_1]$. Explain why the commutator quotient group is free-abelian of rank 3. By mapping x_3 to $\begin{pmatrix} i & 1 \\ 2i & 2-i \end{pmatrix}$, or otherwise, show that there is a faithful representation of $\pi_1(S^3 - l)$ in $PSL_2(\mathbb{C})$ and deduce that $S^3 - l$ has a hyperbolic structure.

[You may assume that the discrete subgroup $PSL_2(\mathbb{Z}[i])$ of $PSL_2(\mathbb{C})$ has a presentation $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $U = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, L = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ subject to the relations $TU = UT, L^2 = (TL)^2 = (UL)^2 = (AL)^2 = A^2 = (TA)^3 = (UAL)^3 = 1_2$.]

2 Let M^3 be a connected, compact, orientable 3-manifold without boundary. If $\pi_1(M^3) = \Gamma$ is infinite, torsion free and abelian, show that $\Gamma \cong \mathbb{Z}$ or $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$. Show further that, if Γ is infinite, torsion free and nilpotent, we must include groups with presentation

$$A \triangleleft \Gamma \twoheadrightarrow \mathbb{Z},$$

where the generator of Γ/A acts on $A \cong \mathbb{Z} \times \mathbb{Z}$ by means of the matrix $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, b \in \mathbb{Z}$.

If the centre $\zeta(\Gamma)$ has trivial intersection with the subgroup A show that Γ is abelian. Exhibit an example of a torsion free extension of such an abelian group by the finite cyclic group $\mathbb{Z}/4$. For which other finite groups Q do such torsion free extensions exist?

Paper 19

3

3 Let Γ be a PD^n -group. Explain how the duality between homology and cohomology follows from the condition

$$H^k(\Gamma, \mathbb{Z}\Gamma) \cong \begin{cases} \mathbb{Z}, & k = 0, n, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that if Γ_1 has finite index in Γ , then Γ is a PD^n -group if and only if Γ_1 is a PD^n -group.

Why would you expect a PD^2 -group to be a surface group?

4 Outline the main steps in the proof of the Loop Theorem, and give two applications of it to the classification of 3-manifolds.

5 Write an essay on the isometrics of a C^{∞} -manifold, paying special attention to dimension 3.

END OF PAPER

Paper 19