

MATHEMATICAL TRIPOS Part III

Tuesday 3 June 2003 1.30 to 4.30

PAPER 54

GENERAL RELATIVITY

Attempt **THREE** questions.

There are **four** questions in total. The questions carry equal weight.

 ${\it Information}$

The signature is (+ - -), all connections are symmetric, and the curvature tensor conventions are defined by

 $R^{i}_{\ kmn} = \Gamma^{i}_{\ km,n} - \Gamma^{i}_{\ kn,m} - \Gamma^{i}_{\ pm} \Gamma^{p}_{\ kn} + \Gamma^{i}_{\ pn} \Gamma^{p}_{\ km} \,.$

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 The Lie derivative with respect to a vector field X of a scalar function f and of a vector field Y are defined to be

$$\mathcal{L}_X f = X(f), \qquad \mathcal{L}_X Y = [X, Y],$$

where [X, Y] is the commutator of X and Y. Write out these definitions in suffix notation and extend the definition of the Lie derivative to cover covector and $\binom{1}{1}$ tensor fields. Explain briefly how you would extend the definition to $\binom{m}{n}$ tensor fields.

Show that

$$\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X = \mathcal{L}_{[X,Y]}.$$

Explain what is meant by a *Killing vector*. Show that a linear combination of Killing vectors with constant coefficients is a Killing vector. Show also that the commutator of two Killing vectors is a Killing vector.

The metric for an axially symmetric rotating star admits precisely two linearly independent Killing vectors T and Φ . Far from the star where fields are weak, and using a standard cylindrical polar chart (t, r, z, φ) we have

$$T \to \frac{\partial}{\partial t}, \qquad \Phi \to \frac{\partial}{\partial \varphi}, \qquad \text{as } (r^2 + z^2) \to \infty.$$

Show that T and Φ commute.

[You may quote the Jacobi identity.]

2 Write an essay on gauge-invariant linearized vacuum perturbations of flat Minkowski spacetimes.

[You may use any information from the lecture handout included with this examination paper.]

3

3 Using standard notation the action S for sourcefree electromagnetism is given by

$$S = -\frac{1}{16\pi} \int \sqrt{-g} \, F^{ab} F_{ab} \, d\Omega,$$

where $F_{ab} = A_{b;a} - A_{a;b}$ and A_a is the vector potential. Show first that $F_{[ab;c]} = 0$.

Next derive the field equation

$$F^{ab}{}_{;b} = 0,$$

by variation of S with respect to A_a . Obtain the energy-momentum tensor T^{ab} from a variational principle and show that requiring $T^{ab}_{;b} = 0$ implies the same field equation provided that F^a_c , regarded as a matrix, is non-singular.

Show that an equivalent action is

$$S = \frac{1}{16\pi} \int \sqrt{-g} \left[F^{ab} F_{ab} - 2F^{ab} (A_{b;a} - A_{a;b}) \right] d\Omega,$$

where F^{ab} is antisymmetric and both F^{ab} and A_a must be varied independently, the *Palatini procedure*.

[You may assume the principle of equivalence.]

4 Let $d\Sigma^2 = d\theta^2 + \sin^2 \theta \, d\phi^2$ denote the line element on the unit 2-sphere, and let

$$\hat{ds}^2 = dt^2 - dr^2 - r^2 \, d\Sigma^2$$

denote the Minkowski spacetime line element in spherical polar coordinates. Introduce retarded coordinates u = t - r and v = t + r and make a conformal transformation to an unphysical spacetime with line element ds^2 given by $ds^2 = 4(1 + u^2)^{-1}(1 + v^2)^{-1}ds^2$. Perform further coordinate changes $p = \tan^{-1} u$, $q = \tan^{-1} v$, followed by T = q + p, R = q - p to obtain $ds^2 = dT^2 - dR^2 - \sin^2 R d\Sigma^2$.

where the ranges of all of the coordinates
$$t, r, \theta, \phi, u, v, p, q, T$$
 and R should be stated explicitly.

Use your results to discuss the asymptotic behaviour of Minkowski spacetime geodesics as seen in the unphysical spacetime.

Paper 54