PAPER 54

GENERAL RELATIVITY

Attempt THREE questions.
There are four questions in total.
The questions carry equal weight.

Information

The signature is $\left.+_{-}--\right)$, all connections are symmetric, and the curvature tensor conventions are defined by

$$
R_{k m n}^{i}=\Gamma_{k m, n}^{i}-\Gamma_{k n, m}^{i}-\Gamma_{p m}^{i} \Gamma_{k n}^{p}+\Gamma^{i}{ }_{p n} \Gamma^{p}{ }_{k m} .
$$

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 The Lie derivative with respect to a vector field X of a scalar function f and of a vector field Y are defined to be

$$
\mathcal{L}_{X} f=X(f), \quad \mathcal{L}_{X} Y=[X, Y]
$$

where $[X, Y]$ is the commutator of X and Y. Write out these definitions in suffix notation and extend the definition of the Lie derivative to cover covector and $\binom{1}{1}$ tensor fields. Explain briefly how you would extend the definition to $\binom{m}{n}$ tensor fields.

Show that

$$
\mathcal{L}_{X} \mathcal{L}_{Y}-\mathcal{L}_{Y} \mathcal{L}_{X}=\mathcal{L}_{[X, Y]} .
$$

Explain what is meant by a Killing vector. Show that a linear combination of Killing vectors with constant coefficients is a Killing vector. Show also that the commutator of two Killing vectors is a Killing vector.

The metric for an axially symmetric rotating star admits precisely two linearly independent Killing vectors T and Φ. Far from the star where fields are weak, and using a standard cylindrical polar chart (t, r, z, φ) we have

$$
T \rightarrow \frac{\partial}{\partial t}, \quad \Phi \rightarrow \frac{\partial}{\partial \varphi}, \quad \text { as } \quad\left(r^{2}+z^{2}\right) \rightarrow \infty
$$

Show that T and Φ commute.
[You may quote the Jacobi identity.]

2 Write an essay on gauge-invariant linearized vacuum perturbations of flat Minkowski spacetimes.
[You may use any information from the lecture handout included with this examination paper.]

3 Using standard notation the action S for sourcefree electromagnetism is given by

$$
S=-\frac{1}{16 \pi} \int \sqrt{-g} F^{a b} F_{a b} d \Omega
$$

where $F_{a b}=A_{b ; a}-A_{a ; b}$ and A_{a} is the vector potential. Show first that $F_{[a b ; c]}=0$.
Next derive the field equation

$$
F_{; b}^{a b}=0,
$$

by variation of S with respect to A_{a}. Obtain the energy-momentum tensor $T^{a b}$ from a variational principle and show that requiring $T^{a b}{ }_{; b}=0$ implies the same field equation provided that $F^{a}{ }_{c}$, regarded as a matrix, is non-singular.

Show that an equivalent action is

$$
S=\frac{1}{16 \pi} \int \sqrt{-g}\left[F^{a b} F_{a b}-2 F^{a b}\left(A_{b ; a}-A_{a ; b}\right)\right] d \Omega
$$

where $F^{a b}$ is antisymmetric and both $F^{a b}$ and A_{a} must be varied independently, the Palatini procedure.
[You may assume the principle of equivalence.]

4 Let $d \Sigma^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$ denote the line element on the unit 2 -sphere, and let

$$
\widehat{d s}^{2}=d t^{2}-d r^{2}-r^{2} d \Sigma^{2}
$$

denote the Minkowski spacetime line element in spherical polar coordinates. Introduce retarded coordinates $u=t-r$ and $v=t+r$ and make a conformal transformation to an unphysical spacetime with line element $d s^{2}$ given by $d s^{2}=4\left(1+u^{2}\right)^{-1}\left(1+v^{2}\right)^{-1} \widehat{d s}^{2}$. Perform further coordinate changes $p=\tan ^{-1} u, q=\tan ^{-1} v$, followed by $T=q+p$, $R=q-p$ to obtain

$$
d s^{2}=d T^{2}-d R^{2}-\sin ^{2} R d \Sigma^{2},
$$

where the ranges of all of the coordinates $t, r, \theta, \phi, u, v, p, q, T$ and R should be stated explicitly.

Use your results to discuss the asymptotic behaviour of Minkowski spacetime geodesics as seen in the unphysical spacetime.

