

MATHEMATICAL TRIPOS Part III

Wednesday 5 June 2002 1.30 to 3.30

PAPER 72

GENERAL RELATIVITY

 $Attempt \ \textbf{THREE} \ questions$

There are **four** questions in total The questions carry equal weight

The signature is (+ - - -), and the curvature tensor conventions are defined by $R^{i}_{\ kmn} = \Gamma^{i}_{\ km,n} - \Gamma^{i}_{\ pm} \Gamma^{p}_{\ kn} + \Gamma^{i}_{\ pn} \Gamma^{p}_{\ km}.$

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 Starting from the definition given on the front page prove the *Ricci identity* for a vector field X^i

$$X^i_{;kl} - X^i_{;lk} = R^i_{jkl} X^j.$$

Find the generalization to the commutator of second covariant derivatives of a tensor of arbitrary valence $T^{i...}{}_{n...}$. You may assume the connection is symmetric.

Assume that φ is a scalar field. Show that the second derivatives are symmetric, i.e., $\varphi_{;lm} = \varphi_{;ml}$. Compute (and where possible simplify) the following third derivatives: $\varphi_{;(lm)n}$ and $\varphi_{;l[mn]}$.

Prove that for any valence 2 tensor T^{ik}

$$T^{ik}_{;ik} = T^{ik}_{;ki}.$$

2 Write an essay on the Pound-Rebka experiment, its implications, the strong principle of equivalence and the derivation of Einstein's field equations for a perfect fluid.

3 A perfect fluid with 4-velocity u^a is described by a number density n, energy density ρ and pressure p, all three being measured in the rest frame of the fluid. The specific enthalpy is $\epsilon = (\rho + p)/n$. Only n and ϵ are independent; $p = p(\epsilon)$ and $\rho = n\epsilon - p$. The velocity is determined from a velocity potential χ via $u_a = \chi_{,a}/\epsilon$. Consider the action

$$S = \int \sqrt{-g} \left(p(\epsilon) + \frac{n}{2\epsilon} \left[g^{ab} \chi_{,a} \chi_{,b} - \epsilon^2 \right] \right) d\Omega,$$

an integral over all of space-time. Use it to establish

$$g_{ab}u^a u^b = 1, \quad \frac{dp}{d\epsilon} = n, \quad (nu^a)_{;a} = 0,$$

and determine the energy-momentum tensor T^{ab} . Obtain equations governing the evolution of n, ρ and u^a .

Now assume that space-time is almost flat

$$ds^{2} = (1 + 2\phi(\mathbf{x})) dt^{2} - dx^{2} - dy^{2} - dz^{2},$$

where the Newtonian potential ϕ is *t*-independent and $|\phi| \ll 1$. Further the fluid motion is slow, $u^a \approx (1, \mathbf{v})$ where $|\mathbf{v}| \ll 1$. Obtain the linearized equations of motion for the fluid and interpret them.

4 Write an essay on horizons in general relativity including definitions and examples.

Paper 72