PAPER 62

GALAXIES

Attempt THREE questions.
There are four questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Show that the internal energy of a spherical star of radius R is

$$
U=\frac{1}{\gamma-1} \int_{0}^{R} P d \mathbf{r}
$$

which can be written as

$$
U=\frac{M_{t o t}}{\gamma-1} \int_{0}^{1} \frac{P(m)}{\rho(m)} d m
$$

where

$$
m=\frac{M(r)}{M_{t o t}}
$$

If we make adiabatic compressions or expansions of every spherical shell, then

$$
P(m)=P_{0}(m)\left(\frac{\rho(m)}{\rho_{0}(m)}\right)^{\gamma}
$$

where the subscript " 0 " refers to the initial state. For such perturbations, with the further simplifying assumption that each shell moves in a scaled fashion

$$
\frac{r}{r_{0}}=\frac{R}{R_{0}}
$$

show that

$$
U=U_{0}\left(\frac{R}{R_{0}}\right)^{-3(\gamma-1)}
$$

Show also that under the same assumptions the gravitational energy scales as

$$
W=W_{0}\left(\frac{R}{R_{0}}\right)^{-1}
$$

so that the total energy is

$$
E=U+W=U_{0}\left(\frac{R}{R_{0}}\right)^{-3(\gamma-1)}+W_{0}\left(\frac{R}{R_{0}}\right)^{-1}
$$

Draw $E(x)$ where $x=\left(R / R_{0}\right)$. Show that on the assumption that equilibrium $\left(\frac{\partial E}{\partial R}=0\right)$ corresponds to $R / R_{0}=x=1$, we must have, in equilibrium, that

$$
3(\gamma-1) U_{0}=\left|W_{0}\right|
$$

and check the condition that the equilibrium is stable,

$$
\left(\frac{\partial^{2} E}{\partial R^{2}}\right)>0
$$

implies

$$
\gamma>4 / 3
$$

2 Show that for a monatomic gas which is isothermal and self-gravitating in a planar distribution $(\rho=\rho(|z|))$ with a rms velocity, $v_{r m s}$, that the density distribution satisfies the equation

$$
v_{z}^{2} \frac{d^{2} \ln \rho}{d z^{2}}=-4 \pi G \rho
$$

which has the solution

$$
\rho(z)=\rho_{0} \operatorname{sech}^{2}\left(\frac{z}{2 z_{0}}\right),
$$

where

$$
z_{0}=\frac{\sigma_{0}}{\sqrt{8 \pi a \rho_{0}}} ; \quad \text { and } \quad \sigma_{0}^{2}=\frac{1}{3} v_{r m s}^{2}
$$

Describe the nature of the general orbit in this potential.

3 Show that the gravitational potential energy of a spherical system can be written

$$
W=-\frac{G}{2} \int_{0}^{\infty} \frac{M^{2}(r) d r}{r^{2}}
$$

where $M(r)$ is the mass interior to radius r .
Derive the virial theorem for a self-gravitating system of N identical points, each of mass m. Define the gravitational radius R_{g} in terms of W by the formula:

$$
W \equiv-G(m M)^{2} / R_{g}
$$

Find the rms velocity dispersion $\left\langle v_{e q}^{2}\right\rangle$ for a system in equilibrium [the answer to be phrased in terms of $\left.\left(n, m, R_{g}\right)\right]$.

Find the $r m s$ escape velocity $\left\langle v_{e s c}^{2}\right\rangle$ in the same units and also in terms of $\left\langle v_{e q}^{2}\right\rangle$.
If a system is not in equilibrium, but collapses from being at rest at infinity and is observed in free fall at a time when its gravitational energy is W (defined above), what is its velocity dispersion $\left\langle v_{\text {coll }}^{2}\right\rangle$ in units of $\left\langle v_{e q}^{2}\right\rangle$?

4 Starting with the simple closed box model for the chemical evolution of a galaxy, and the solution

$$
Z_{*}(\mu)=\frac{Y}{Y+1}\left[1-\frac{\mu}{Y}\left(\frac{1-\mu^{Y}}{1-\mu}\right)\right]
$$

where $Z_{*}(\mu)$ is the metallicity of a star born when the fraction of gas mass to total mass has been reduced from its initial value of unity to

$$
\mu=\frac{M_{g}}{M_{g, \text { init }}} .
$$

Show that, approximately (until most of the gas has been consumed, and the yield is small)

$$
Z_{*}(\delta)=\frac{Y \delta}{2},
$$

where δ is the fraction of the gas consumed: $\delta=1-\mu$. Also show that if one examines the distribution of stars when the average star has the solar metallicity, Z_{\odot}, the most metal rich star has

$$
Z_{*, \max }=Z_{\odot} / 2 .
$$

Find the distribution of stellar metallicities

$$
d P=F\left(Z_{*}\right) d z_{*} .
$$

