
MATHEMATICAL TRIPOS Part III

Monday 4 June 2001 1.30 to 4.30

PAPER 40

GALAXIES

Answer THREE questions. The questions are of equal weight.

Questions for which both parts are completed score more highly than two partial answers.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 (i) Derive the equation for the chemical evolution of a galaxy in the form

d

ds
(gZi) = −1− βf

1− β
Zi + yif,

where

g(s) is the interstellar mass in gas and dust,

s is the mass in stars,

β is the constant fraction of the mass returned to the interstellar medium per unit
mass initially formed into stars,

yi is the constant nucleogenic yield of element i per unit mass remaining in stars,

Zi(s) is the interstellar abundance of element i,

f is the fraction of the returned mass retained in the galaxy.

Assuming the above equation is solved for Zi(s), and hence s(Zi), explain how
this function gives information on the relative numbers of stars that have different metal
abundances.

(ii) If s∞ is the final mass in stars when the gas is exhausted and G = g/s∞, S = s/s∞
and the function G(S) is given by G = S(1− S) show that even if f varies

d

ds
(GZi) +

(1− βf)GZi

(1− β)S(1− S)
= yif.

When f = S use an integrating factor to show that

Zi =
yi

Sq

∫ s

o

Sq

1− S
dS = yi

∞∑
1

Sn

q + n
where q =

2− β

1− β
.
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2 (i) Jeans’s equation of stellar hydrodynamics for the number density n(r) and the
mean velocity u(r) of stars of a particular type is

n(r)
[
∂u
∂t

+ (u .∇)u
]

= −divp + n∇ψ,

where p the ‘pressure tensor’ is defined in terms of the distribution function f(v, r)
for the stars of that type by p =

∫
f(v − u)(v − u)d3v.

Show that in a stationary system in which u = 0 and f is isotropic in v, Jeans’s
equation reduces to the hydrostatic equation for the scalar ‘pressure’ p.

∇p = n∇ψ.

Such a system is observed to be spherical with a projected number density of these
stars N(R) at projected distance R from the centre and a one dimensional projected
Döppler velocity dispersion σ(R) in the line of sight there. Show that n(r) and p(r)
are related to the observed N(R) and σ(R) by

n(r) = − 1
2πr

d

dr

[∫ ∞

r2

N(R)√
R2 − r2

dR2

]
and p(r) =

−1
2πr

d

dr

[∫ ∞

r2

N(R)σ2(R)√
R2 − r2

dR2

]

[You may assume
∫ b

a
dt√

(t−a)(b−t)
= π.]

(ii) If N(R) = Nob
5/(R2+b2)5/2 and σ(R) = σob

1/2/(R2+b2)1/4 where No, σo and b are
constants, use the integration variable s = R2+b2

r2+b2 to show that n(r) = 2
π

Nob5

(r2+b2)3 I5/2

where In =
∫∞
1
s−n(s−1)−1/2ds, and find a similar expression for p(r). Given that

I5/2 = 4/3 and I3 = 3π
8 , use Part (i) to give the total gravitational acceleration

at r as
∇ψ = − r

(r2 + b2)3/2
σ2

o b
315π
128

·

How may the mass density of all the matter present be found from this?
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3 (i) The gravitational potential of a point mass, m, at distance b below the origin is
given by

ψI(R, z) = Gm/
√
R2 + (z + b)2

or by ψII = ψI − Gmb−1 if the potential is zeroed at the origin. Calculate the
gravitational flux per unit area through the plan z = 0 at distance R from the origin. Use
Kuzmin’s reflection method to find the surface density Σ(R) that gives the above potential
for z > 0 and its reflection for z 6 0.

Find as an integral the surface density that likewise gives the potential

ψI(R, z) = G

∫ ∞

0

µ(b)db
[R2 + (|z|+ b)2]1/2

or ψII = G

∫ ∞

0

(
1

[R2 + (|z|+ b)2]1/2
− 1
b

)
µ(b)db

(ii) If µ(b) = Bbβ with 0 < β < 1 show that ψI diverges at the origin but that
ψII remains zero there. Calculate ∂ψII/∂R on z = 0 and use the substitution
b2 = R2 t

1−t to show that ∂ψ/∂R = −CRβ−1 there

where C = 1
2GB

∫ 1

0
t(β−1)/2(1− t)−β/2dt = 1

2GB
Γ( β+1

2 )Γ( 2−β
2 )

Γ( 3
2 )

·

[
Y ou may quote the result that

∫ 1

0
tz−1(1− t)w−1dt = Γ(z)Γ(w)

Γ(z+w) ·

]
Hence use Part (i) to find the surface density of a flat galaxy whose circular velocity

is V = KRβ/2 where K is a known constant.
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4 (i) Schwarzschild’s metric for a spherical black hole is

ds2 =
(

1− 2m
r

)
c2dt2 −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2θdφ2

)
;

where m = GM
c2 .

A steady equatorial accretion disk carries a rest-mass flux F = 2πrΣu inwards into
the hole where u = −dr/dτ and τ is the proper time measured on a circulating fluid
element. If h(r) is the specific angular momentum of the circular orbit of radius r and
Ω(r) is its angular velocity as seen from infinity, show that, if no angular momentum is
radiated, the inward radial component of the 4-velocity of the disk at r is

u = νr2
(
−dΩ
dr

)
/(h− ho)

where ν is the kinematic viscosity of the disk and ho is the specific angular momentum
swallowed by the black hole.

Given that two first integrals of the geodesic equation of a free particle moving in
the equatorial plane θ = π/2 are

(
1− 2m

r

)
dt

dτ
= ε/c2,

and r2
dφ

dτ
= h,

and that by definition of dτ in an equatorial orbit

c2 =
(

1− 2m
r

)
c2

(
dt

dτ

)2

−
(

1− 2m
r

)−1 (
dr

dτ

)2

− r2
(
dφ

dτ

)2

,

show that
d2r

dτ2
= −mc

2

r2
+
h2

r3

(
1− 3m

r

)
,

hence show that circular orbits have

h(r) =
√

m

r − 3m
r c

and the minimum h is h0 =
√

12 mc, at r = 6m.

(ii) A fluid element of the disk is observed from afar circulating down from r = r1
to r = 6m. Given that Ω(r) = c

√
m/r3 show that the time it is seen to take is

approximately *

∆t =
2
3ν

∫ r1

6m

[
r −

√
12m(r − 3m)

] r dr

(r − 3m)
=

m2

ν

[
3X2 − 8(X − 1)3/2 + 6X − 24(X − 1)1/2 − 6 ln(X − 1) + 8

]
where X = r1/(3m).

* The light travel time across the disk is to be neglected and (dr/dτ)2 is neglected
as compared to h2/r2 in evaluating dt/dτ .
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