PAPER 40

GALAXIES

Answer THREE questions. The questions are of equal weight.
Questions for which both parts are completed score more highly than two partial answers.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) Derive the equation for the chemical evolution of a galaxy in the form

$$
\frac{d}{d s}\left(g Z_{i}\right)=-\frac{1-\beta f}{1-\beta} Z_{i}+y_{i} f
$$

where
$g(s)$ is the interstellar mass in gas and dust,
s is the mass in stars,
β is the constant fraction of the mass returned to the interstellar medium per unit mass initially formed into stars,
y_{i} is the constant nucleogenic yield of element i per unit mass remaining in stars,
$Z_{i}(s)$ is the interstellar abundance of element i,
f is the fraction of the returned mass retained in the galaxy.
Assuming the above equation is solved for $Z_{i}(s)$, and hence $s\left(Z_{i}\right)$, explain how this function gives information on the relative numbers of stars that have different metal abundances.
(ii) If s_{∞} is the final mass in stars when the gas is exhausted and $G=g / s_{\infty}, S=s / s_{\infty}$ and the function $G(S)$ is given by $G=S(1-S)$ show that even if f varies

$$
\frac{d}{d s}\left(G Z_{i}\right)+\frac{(1-\beta f) G Z_{i}}{(1-\beta) S(1-S)}=y_{i} f
$$

When $f=S$ use an integrating factor to show that

$$
Z_{i}=\frac{y_{i}}{S^{q}} \int_{o}^{s} \frac{S^{q}}{1-S} d S=y_{i} \sum_{1}^{\infty} \frac{S^{n}}{q+n} \text { where } q=\frac{2-\beta}{1-\beta}
$$

2 (i) Jeans's equation of stellar hydrodynamics for the number density $n(\mathbf{r})$ and the mean velocity $\mathbf{u}(\mathbf{r})$ of stars of a particular type is

$$
n(\mathbf{r})\left[\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} . \nabla) \mathbf{u}\right]=-\operatorname{div} \mathbf{p}+n \nabla \psi
$$

where \mathbf{p} the 'pressure tensor' is defined in terms of the distribution function $f(\mathbf{v}, \mathbf{r})$ for the stars of that type by $\mathbf{p}=\int f(\mathbf{v}-\mathbf{u})(\mathbf{v}-\mathbf{u}) d^{3} v$.

Show that in a stationary system in which $\mathbf{u}=0$ and f is isotropic in \mathbf{v}, Jeans's equation reduces to the hydrostatic equation for the scalar 'pressure' p.

$$
\nabla p=n \nabla \psi
$$

Such a system is observed to be spherical with a projected number density of these stars $N(R)$ at projected distance R from the centre and a one dimensional projected Döppler velocity dispersion $\sigma(R)$ in the line of sight there. Show that $n(r)$ and $p(r)$ are related to the observed $N(R)$ and $\sigma(R)$ by

$$
n(r)=-\frac{1}{2 \pi r} \frac{d}{d r}\left[\int_{r^{2}}^{\infty} \frac{N(R)}{\sqrt{R^{2}-r^{2}}} d R^{2}\right] \text { and } p(r)=\frac{-1}{2 \pi r} \frac{d}{d r}\left[\int_{r^{2}}^{\infty} \frac{N(R) \sigma^{2}(R)}{\sqrt{R^{2}-r^{2}}} d R^{2}\right]
$$

[You may assume $\left.\int_{a}^{b} \frac{d t}{\sqrt{(t-a)(b-t)}}=\pi.\right]$
(ii) If $N(R)=N_{o} b^{5} /\left(R^{2}+b^{2}\right)^{5 / 2}$ and $\sigma(R)=\sigma_{o} b^{1 / 2} /\left(R^{2}+b^{2}\right)^{1 / 4}$ where N_{o}, σ_{o} and b are constants, use the integration variable $s=\frac{R^{2}+b^{2}}{r^{2}+b^{2}}$ to show that $n(r)=\frac{2}{\pi} \frac{N_{o} b^{5}}{\left(r^{2}+b^{2}\right)^{3}} I_{5 / 2}$ where $I_{n}=\int_{1}^{\infty} s^{-n}(s-1)^{-1 / 2} d s$, and find a similar expression for $p(r)$. Given that $I_{5 / 2}=4 / 3$ and $I_{3}=\frac{3 \pi}{8}$, use Part (i) to give the total gravitational acceleration at \mathbf{r} as

$$
\nabla \psi=-\frac{\mathbf{r}}{\left(r^{2}+b^{2}\right)^{3 / 2}} \sigma_{o}^{2} b \quad \frac{315 \pi}{128}
$$

How may the mass density of all the matter present be found from this?

3 (i) The gravitational potential of a point mass, m, at distance b below the origin is given by

$$
\psi_{I}(R, z)=G m / \sqrt{R^{2}+(z+b)^{2}}
$$

or by $\psi_{I I}=\psi_{I}-G m b^{-1}$ if the potential is zeroed at the origin. Calculate the gravitational flux per unit area through the plan $z=0$ at distance R from the origin. Use Kuzmin's reflection method to find the surface density $\Sigma(R)$ that gives the above potential for $z \geqslant 0$ and its reflection for $z \leqslant 0$.

Find as an integral the surface density that likewise gives the potential

$$
\begin{gathered}
\psi_{I}(R, z)=G \int_{0}^{\infty} \frac{\mu(b) d b}{\left[R^{2}+(|z|+b)^{2}\right]^{1 / 2}} \\
\text { or } \quad \psi_{I I}=G \int_{0}^{\infty}\left(\frac{1}{\left[R^{2}+(|z|+b)^{2}\right]^{1 / 2}}-\frac{1}{b}\right) \mu(b) d b
\end{gathered}
$$

(ii) If $\mu(b)=B b^{\beta}$ with $0<\beta<1$ show that ψ_{I} diverges at the origin but that $\psi_{I I}$ remains zero there. Calculate $\partial \psi_{I I} / \partial R$ on $z=0$ and use the substitution $b^{2}=R^{2} \frac{t}{1-t}$ to show that $\partial \psi / \partial R=-C R^{\beta-1}$ there
where $C=\frac{1}{2} G B \int_{0}^{1} t^{(\beta-1) / 2}(1-t)^{-\beta / 2} d t=\frac{1}{2} G B \frac{\Gamma\left(\frac{\beta+1}{2}\right) \Gamma\left(\frac{2-\beta}{2}\right)}{\Gamma\left(\frac{3}{2}\right)}$.
[You may quote the result that $\left.\int_{0}^{1} t^{z-1}(1-t)^{w-1} d t=\frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)} \cdot\right]$
Hence use Part (i) to find the surface density of a flat galaxy whose circular velocity is $V=K R^{\beta / 2}$ where K is a known constant.

4 (i) Schwarzschild's metric for a spherical black hole is

$$
d s^{2}=\left(1-\frac{2 m}{r}\right) c^{2} d t^{2}-\left(1-\frac{2 m}{r}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where $m=\frac{G M}{c^{2}}$.
A steady equatorial accretion disk carries a rest-mass flux $F=2 \pi r \Sigma u$ inwards into the hole where $u=-d r / d \tau$ and τ is the proper time measured on a circulating fluid element. If $h(r)$ is the specific angular momentum of the circular orbit of radius r and $\Omega(r)$ is its angular velocity as seen from infinity, show that, if no angular momentum is radiated, the inward radial component of the 4 -velocity of the disk at r is

$$
u=\nu r^{2}\left(\frac{-d \Omega}{d r}\right) /\left(h-h_{o}\right)
$$

where ν is the kinematic viscosity of the disk and h_{o} is the specific angular momentum swallowed by the black hole.

Given that two first integrals of the geodesic equation of a free particle moving in the equatorial plane $\theta=\pi / 2$ are

$$
\begin{aligned}
\left(1-\frac{2 m}{r}\right) \frac{d t}{d \tau} & =\epsilon / c^{2} \\
\text { and } \quad r^{2} \frac{d \phi}{d \tau} & =h,
\end{aligned}
$$

and that by definition of $d \tau$ in an equatorial orbit

$$
c^{2}=\left(1-\frac{2 m}{r}\right) c^{2}\left(\frac{d t}{d \tau}\right)^{2}-\left(1-\frac{2 m}{r}\right)^{-1}\left(\frac{d r}{d \tau}\right)^{2}-r^{2}\left(\frac{d \phi}{d \tau}\right)^{2}
$$

show that

$$
\frac{d^{2} r}{d \tau^{2}}=-\frac{m c^{2}}{r^{2}}+\frac{h^{2}}{r^{3}}\left(1-\frac{3 m}{r}\right)
$$

hence show that circular orbits have

$$
h(r)=\sqrt{\frac{m}{r-3 m}} r c
$$

and the minimum h is $h_{0}=\sqrt{12} m c$, at $r=6 \mathrm{~m}$.
(ii) A fluid element of the disk is observed from afar circulating down from $r=r_{1}$ to $r=6 m$. Given that $\Omega(r)=c \sqrt{m / r^{3}}$ show that the time it is seen to take is approximately *

$$
\begin{gathered}
\Delta t=\frac{2}{3 \nu} \int_{6 m}^{r_{1}}[r-\sqrt{12 m(r-3 m)}] \frac{r d r}{(r-3 m)}= \\
\frac{m^{2}}{\nu}\left[3 X^{2}-8(X-1)^{3 / 2}+6 X-24(X-1)^{1 / 2}-6 \ln (X-1)+8\right]
\end{gathered}
$$

where $X=r_{1} /(3 m)$.

* The light travel time across the disk is to be neglected and $(d r / d \tau)^{2}$ is neglected as compared to h^{2} / r^{2} in evaluating $d t / d \tau$.

