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1 (1) We may study the vertical structure of a thin axisymmetric disk by neglecting
all radial derivatives and adopting the form f = f(Ez) for the distribution function, where
Ez ≡ 1

2v
2
z + Φ(z). Show that if f = ρ0(2πσ2

z)−1/2 exp(−Ez/σ
2
z), the approximate form of

Poisson’s equation may be written:

2
d2φ

dζ2
= e−φ , where φ ≡ Φ

σ2
z

, ζ ≡ z

z0
and z0 ≡

σz√
8πGρ0

.

By solving this equation subject to the boundary conditions

φ(0) = dφ/dζ|0 = 0 ,

show that the density ρ in the disk is given by

ρ(z) = ρ0sech2

(
z

2z0

)
.

(2) Consider a spherically-symmetric stellar-dynamical system with distribution
function

f(E) =
ρ1

(2πσ2)3/2
exp[E/σ2] ,

where E = Ψ− 1
2v

2 is the relative energy, where Ψ is the potential, v is velocity, σ is the
(constant) dispersion, and ρ1 is a constant. Find the density ρ of the system, and write
down the Poisson equation for the system.

The equation of hydrostatic support for an isothermal gas of density ρ(r) at
temperature T is

kT

m0

dρ

dr
= −ρGm(r)

r2
,

where k is Boltzmann’s constant, m0 is the mass per particle, and m(r) is the total mass
interior to radius r. Show that the stellar dynamical system and the gaseous system have
the same density structure when

σ2 =
kT

m0
.

Note that:
∫∞
0

exp(−αx2)dx =
√
π/α.
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2 Imagine a particle of massM moving through an equilibrium, spherically symmetric
system of particles of mass m,M > m. The distribution function of the particles of mass
m is f(v) = n0

(2πσ2)3/2

{
exp(−v2/2σ2)− exp(−v2

e/2σ
2)

}
with v a particle velocity, ve the

escape velocity, V an rms velocity, σ the isotropic velocity dispersion, n0 = ρ0/m a number
density, and ρ0 the density within a core

ρ = ρ0 , for r < r0 = (9σ2/4πGρ)1/2 .

a) Show that the massive particle is systematically slowed by dynamical friction at a rate

dV

dt
= −16π2G2mM

V 2
lnΛ

∫ V

0

f(v)v2dv

where bm is the maximum impact parameter relevant to the situation, and Λ = bmV 2

GM .

b) Show the escape velocity and circular velocity are related by

v2
e(r) = V 2

c (r)
(

3r20
r2

− 1
)

c) Assume M is in a circular orbit, so that v ≡ V ≡ Vc. With the substitution
X = vc/

√
2σ, and defining τ , the characteristic time scale with which the orbit decays, by

τ =
r

2(dr/dt)r

show that

τ =
V 3

c

32π2 lnΛG2Mρ0I(X)

where I(X) = 1
4π

{
erf(X)− 2X√

π
exp(−X2)− 4X3

3
√

π
exp(X2 − 9/2)

}
,

and erf(X) ≡ 2√
π

∫ X

0
e−t2dt.
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3 The hydrostatic equilibrium Jeans’ equation in a spherical galaxy, with coordinates
(r, θ, φ), density ρ, and potential Φ and mass M(r), is

∂
(
ρv2

r

)
∂r

+
ρ

r

{
2v2

r − (v2
θ + v2

φ)
}

= −ρ∂Φ
∂r

.

a) Consider a spherical isotropic system, with density ρ(r) = ρ0

(
r0
r

)k, r0 a scale factor.
Determine the velocity dispersion in the two cases (i) k < 1; and (ii) k > 1. You may find
it helpful to consider the dominant range of contributions to the integral.

b) Consider a spherical system with anisotropic velocity dispersion defined by β =
1− v2

θ/v
2
r , observed at projected distance R from its centre. I(R) is the projected surface

brightness distribution, σ2
p the projected velocity dispersion. Show that

Iσ2
p −R2

∫ ∞

R

ρGM(r)dr
r2
√
r2 −R2

=
∫ ∞

R

{
2ρv2

r +
R2

r

∂(ρv2
r)

∂r

}
rdr√
r2 −R2

.

Discuss the implications for deducing the existence of central massive black holes in
galaxies from surface brightness and velocity dispersion profiles.
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4 (a) Define the following properties of an orbit

(i) constant of the motion

(ii) integral of the motion

(iii) isolating integral of the motion

Under which conditions are there the following numbers of isolating integrals for an orbit

(iv) zero

(v) one

(vi) more than three

(vii) five.

(b) Consider the general spherical gravitational potential

Φ(r) = −GM
(

1
r

+
a

r2

)
,

where M is a mass and a a constant. In this potential the equations of motion may be
written as

d2u

dψ2
+

(
1− 2GMa

L2

)
u =

GM

L2

where u is the inverse radial coordinate, ψ an angular coordinate, and L the orbit’s angular
momentum.

Consider this to determine under which conditions five isolating integrals of the
motion exist.

END OF PAPER
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