MATHEMATICAL TRIPOS Part III

Monday 4 June 2007 9.00 to 12.00

PAPER 4

FINITE DIMENSIONAL LIE ALGEBRAS AND THEIR REPRESENTATIONS

Attempt **ALL** questions. There are **FIVE** questions in total. Question 2 carries the most weight.

All Lie algebras are over \mathbb{C} .

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury Tag Script paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let \mathfrak{g} be the 3-dimensional Lie algebra over \mathbb{C} with basis p, q, c and bracket

$$[p,q] = c$$
 $[c,p] = [c,q] = 0.$

- (i) Determine the derived and central series for \mathfrak{g} . Is \mathfrak{g} nilpotent, solvable or neither?
- (ii) Determine all the irreducible finite dimensional representations of g.
- (iii) Find an irreducible faithful representation of \mathfrak{g} .
- (iv) Find a faithful finite dimensional representation of \mathfrak{g} .

2 Let

$$\mathfrak{g} = \mathfrak{so}_{2n+1} = \left\{ A \in Mat_{2n+1} | AJ + JA^T = 0 \right\}, \quad J = \begin{pmatrix} & & 1 \\ & \ddots & \\ 1 & & \end{pmatrix}$$

and $\mathfrak{t} = \text{diagonal matrices in } \mathfrak{g}$.

(i) Decompose \mathfrak{g} as a t-module, and hence write the roots R for \mathfrak{g} . Choose positive roots to be those occurring in upper triangular matrices. Write down the positive roots R^+ , the simple roots π , the highest root θ , and the fundamental weights. Write down ρ .

Draw the Dynkin diagram and label it by simple roots. Draw the extended Dynkin diagram.

- (ii) Show that $\mathfrak{so}_5 \simeq \mathfrak{sp}_4$.
- (iii) For each root $\alpha \in R$, write the reflection $s_{\alpha} : \mathfrak{t} \to \mathfrak{t}$ explicitly. Describe the Weyl group W (you do not need to prove your answer).
- (iv) Let $V = \mathbb{C}^{2n+1}$ be the standard representation of \mathfrak{so}_{2n+1} . Draw the crystal of V, and of $V \otimes V$. Write the highest weight of each irreducible summand of $V \otimes V$.

3

- (i) State the Weyl dimension formula, briefly defining the notation you use.
- (ii) Draw the root system of G_2 , and the fundamental weights ω_1, ω_2 .

Write down the dimension of the irreducible representation with highest weight $n_1\omega_1 + n_2\omega_2$, $n_1, n_2 \in \mathbb{N}$.

4 Let \mathfrak{g} be a Lie algebra, V a representation of \mathfrak{g} . Show there is a homomorphism of \mathfrak{g} -modules from $\mathfrak{g} \otimes V$ to V. Hence conclude that if \mathfrak{g} is semisimple and V is a non-trivial simple representation, that V occurs as a summand of $\mathfrak{g} \otimes V$.

$\mathbf{5}$

- (i) Let V be a representation of sl_2 . Define the character of V, and explain why it is a unimodal Laurent polynomial.
- (ii) Let

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n][n-1]\dots[n-k+1]}{[k][k-1]\dots[1]} , \text{ where } [a] = \frac{q^a - q^{-a}}{q - q^{-1}} .$$

Show $\begin{bmatrix}n\\k\end{bmatrix}$ is a unimodal Laurent polynomial.

END OF PAPER