MATHEMATICAL TRIPOS
Part III

Monday 7 June, $2004 \quad 1.30$ to 4.30

PAPER 3

FINITE DIMENSIONAL LIE ALGEBRAS AND THEIR REPRESENTATIONS

Attempt ALL questions.

There are five questions in total.
Question 2 carries the most weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) Let \mathfrak{g} be a Lie algebra. Define what it means for \mathfrak{g} to be (a) solvable and (b) semisimple.
(ii) Let $\mathfrak{g}=\mathfrak{s l}_{n}$. Define two bilinear forms (,) and $(,)_{\text {ad }}$ by $(A, B)=\operatorname{tr}(A B)$ and $(A, B)_{a d}=\operatorname{tr}(a d A \cdot a d B)$. Show $()=,\lambda(,)_{a d}$ and compute λ.
(iii) Let \mathfrak{g} be the four dimensional Lie algebra with basis c, d, p, q and Lie brackets

$$
[c, \mathfrak{g}]=0 \quad[p, q]=c \quad[d, p]=p \quad[d, q]=-q
$$

(a) Show \mathfrak{g} is solvable.
(b) Construct a non-degenerate invariant bilinear form (,) on \mathfrak{g}. Show there does not exist a representation V of \mathfrak{g} such that $(x, y)=\operatorname{tr}_{V}(x y)$.
(State clearly any theorems you use.)

2 Let $\mathfrak{g}=\mathfrak{s o}_{2 n}=\left\{A \in M a t_{2 n} \mid A J+J A^{T}=0\right\}, \quad J=\left(\begin{array}{ll} & . \\ 1 & .\end{array}\right), \mathfrak{t}=$ diagonal matrices in \mathfrak{g}.
a) Decompose \mathfrak{g} as a \mathfrak{t}-module, and hence write the roots R for \mathfrak{g}. Choose positive roots to be those ocurring in upper triangular matrices. Write the positive roots R^{+}, the simple roots Π, and the fundamental weights. Write ρ.

Draw the Dynkin diagram, and label it by the simple roots.
b) Show that $\mathfrak{s o}_{4}$ is isomorphic to $\mathfrak{s l}_{2} \times \mathfrak{s l}_{2}$.
c) For each root $\alpha \in R$, write the reflection $s_{\alpha}: \mathfrak{t} \rightarrow \mathfrak{t}$ explicitly. Describe the Weyl group W (you do not need to prove your answer).
d) Let $V=\mathbb{C}^{2 n}$. Write the character of V, and determine its highest weight. Decompose $V \otimes V$ into irreducibles; determine their highest weights.

3 State the Weyl character formula, briefly defining the notation you use.
$4 \quad B=\{\bullet \xrightarrow{1} \bullet \xrightarrow{2} \bullet \xrightarrow{1} \bullet\}$ is the crystal of a representation. Decompose $B \otimes B$ into irreducibles.
$5 \quad$ Let $\mathfrak{g}=\mathfrak{s l}_{2}$, and V be a respresentation of \mathfrak{g}.
(i) Show that if V is finite dimensional,

$$
s=\exp (e) \exp (-f) \exp (e)
$$

is well defined as a linear map $s: V \rightarrow V$. Here $\exp (x)=\sum_{n \geqslant 0} \frac{x^{n}}{n!}$ and e, f, h are the standard basis of $\mathfrak{s l}_{2}$.
(ii) Show that s is not well defined on a Verma module $M(n)$ with highest weight $n \in \mathbb{N}$.
(iii) Show that s^{2} acts as $(-1)^{n}$ on $L(n)$, the irreducible representation with highest weight $n, n \in \mathbb{N}$.
[Hint: it is possible to do this without much computation.]

