

MATHEMATICAL TRIPOS Part III

Monday 7 June, 2004 1.30 to 4.30

PAPER 3

FINITE DIMENSIONAL LIE ALGEBRAS AND THEIR REPRESENTATIONS

Attempt ALL questions. There are five questions in total. Question 2 carries the most weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 (i) Let \mathfrak{g} be a Lie algebra. Define what it means for \mathfrak{g} to be (a) solvable and (b) semisimple.

2

(ii) Let $\mathfrak{g} = \mathfrak{sl}_n$. Define two bilinear forms (,) and (,)_{ad} by (A, B) = tr(AB) and $(A, B)_{ad} = tr(adA \cdot adB)$. Show (,) = λ (,)_{ad} and compute λ .

(iii) Let \mathfrak{g} be the four dimensional Lie algebra with basis c, d, p, q and Lie brackets

$$[c,\mathfrak{g}]=0 \quad [p,q]=c \quad [d,p]=p \quad [d,q]=-q\,.$$

(a) Show \mathfrak{g} is solvable.

(b) Construct a non-degenerate invariant bilinear form (,) on \mathfrak{g} . Show there does not exist a representation V of \mathfrak{g} such that $(x, y) = tr_V(xy)$.

(State clearly any theorems you use.)

2 Let
$$\mathfrak{g} = \mathfrak{so}_{2n} = \{A \in Mat_{2n} \mid AJ + JA^T = 0\}, \quad J = \begin{pmatrix} & & 1 \\ & \ddots & \\ 1 & & \end{pmatrix}, \mathfrak{t} = \text{diagonal}$$

matrices in \mathfrak{g} .

a) Decompose \mathfrak{g} as a t-module, and hence write the roots R for \mathfrak{g} . Choose positive roots to be those ocurring in upper triangular matrices. Write the positive roots R^+ , the simple roots Π , and the fundamental weights. Write ρ .

Draw the Dynkin diagram, and label it by the simple roots.

b) Show that \mathfrak{so}_4 is isomorphic to $\mathfrak{sl}_2 \times \mathfrak{sl}_2$.

c) For each root $\alpha \in R$, write the reflection $s_{\alpha} : \mathfrak{t} \to \mathfrak{t}$ explicitly. Describe the Weyl group W (you do not need to prove your answer).

d) Let $V = \mathbb{C}^{2n}$. Write the character of V, and determine its highest weight. Decompose $V \otimes V$ into irreducibles; determine their highest weights.

3 State the Weyl character formula, briefly defining the notation you use.

4 $B = \{ \bullet \xrightarrow{1} \bullet \xrightarrow{2} \bullet \xrightarrow{1} \bullet \}$ is the crystal of a representation. Decompose $B \otimes B$ into irreducibles.

3

5 Let $\mathfrak{g} = \mathfrak{sl}_2$, and V be a respresentation of \mathfrak{g} .

(i) Show that if V is finite dimensional,

$$s = \exp(e) \exp(-f) \exp(e)$$

is well defined as a linear map $s: V \to V$. Here $\exp(x) = \sum_{n \ge 0} \frac{x^n}{n!}$ and e, f, h are the standard basis of \mathfrak{sl}_2 .

(ii) Show that s is not well defined on a Verma module M(n) with highest weight $n\in\mathbb{N}.$

(iii) Show that s^2 acts as $(-1)^n$ on L(n), the irreducible representation with highest weight $n, n \in \mathbb{N}$.

[Hint: it is possible to do this without much computation.]