PAPER 1

FINITE DIMENSIONAL LIE ALGEBRAS AND THEIR REPRESENTATIONS

> Attempt QUESTION 1 and THREE other questions.
> There are $\mathbf{~ s i x ~ q u e s t i o n s ~ i n ~ t o t a l . ~}$
> The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 a) Let $W=\langle x, y\rangle$ be the standard (defining) representation of $\mathfrak{s l}(2)$. Let

$$
U=W \otimes \operatorname{Sym}^{3}(W)
$$

(i) Decompose U into weight spaces, giving a basis for each weight space.
(ii) Draw the weight diagram for U, and identify which irreducible representations occur as submodules of U.
(iii) Give a basis of each irreducible submodule, and indicate highest weight vectors.
b) Now let $V=\langle x, y, z\rangle$ be the standard (defining) representation of $\mathfrak{s l}(3)$, and let $V^{*}=\left\langle x^{*}, y^{*}, z^{*}\right\rangle$ be the dual representation. Let

$$
W=V^{*} \otimes \operatorname{Sym}^{2}(V)
$$

(i) Draw the weight diagram for W and indicate a basis for each weight space.
(ii) Identify the irreducible representations of W and draw the weight diagram for each irreducible representation.
(iii) On their respective weight diagrams indicate a basis for the weight space for each submodule.

2 Let \mathfrak{h} be a Cartan subalgebra of a semi-simple Lie algebra \mathfrak{g}.
i) What is meant by the Cartan decomposition of \mathfrak{g} ? Define all terms, but you may quote results about Cartan subalgebras and semi-simple Lie algebras as needed.
ii) Define the Killing form $B($,$) on \mathfrak{g}$, and show B is invariant.
iii) Show $B($,) restricted to \mathfrak{h} is non-degenerate. (You may assume $B($,$) is non-$ degenerate on \mathfrak{g}.)
iv) With respect to a suitable basis of $\mathfrak{s l}(3)$ compute

$$
B\left(\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right)\right)
$$

3 i) Let $G \subset \mathbb{R}^{n}$ be a Lie group. Define the tangent space at the identity and describe the adjoint map

$$
\operatorname{Ad}: G \rightarrow \operatorname{Aut}\left(T_{e} G\right)
$$

Explain how the adjoint action of G on $T_{e} G$ gives rise to a Lie bracket

$$
[,]: T_{e} G \times T_{e} G \rightarrow T_{e} G
$$

Give this map explicitly.
(Proofs are not required, but you should indicate what needs to be checked.)
ii) Suppose that in $S L(2), X$ is tangent to the curve $H(s)=\left[\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right]$, and Y is tangent to the curve $g(t)=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$.
Use the definition in i) to calculate $[X, Y]$.
Also compute explicitly $[Y, X]$ demonstrating that

$$
[X, Y]=-[Y, X]
$$

$4 \quad$ Prove: If \mathfrak{g} is semi-simple Lie algebra, V a \mathfrak{g} module, W a \mathfrak{g} submodule, then there exists another submodule W^{\prime} such that $W \oplus W^{\prime}=V$.
(You should define any constructions you use, but you may quote standard facts about them.)
$5 \quad$ Let \mathfrak{g} be a semi-simple Lie algebra, with Cartan subalgebra \mathfrak{h}.
i) If V is a representation of \mathfrak{g} explain what is meant by the set of weights Λ_{V} of V.
ii) Explain what is meant by the weight lattice Λ_{W}, and why $\Lambda_{V} \subset \Lambda_{W}$ for all representations V of \mathfrak{g}.
iii) Explain what is meant by positive roots of \mathfrak{g}.
iv) Explain what the fundamental Weyl chamber W is.
v) If $\mathfrak{g}=\mathfrak{s l}(3)$ with \mathfrak{h} the usual Cartan subalgebra, let $\ell: \mathbb{R} \Lambda_{W} \rightarrow \mathbb{R}$ be given by (not the usual one!)

$$
\ell(\mu)=\mu\left(\begin{array}{ccc}
-\sqrt{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1+\sqrt{2}
\end{array}\right)
$$

List the positive roots and sketch the fundamental Weyl chamber with respect to the ordering determined by ℓ.

6 i) Define what is meant by an abstract root system.
ii) In the following root system in \mathbb{R}^{2} the simple roots are drawn

Draw the remaining roots. Explain why each root must be a root and why no other roots can occurs. (You may quote any results you need).
iii) Suppose now that the Dynkin diagram of a three dimensional root system is given by $\bigcirc \bigcirc-\bigcirc$ and has root $\alpha=(1,0,0), \beta=(-1,1,0)$.

- label the nodes of the Dynkin diagram by α, β appropriately, and let γ be the remaining node;
- give coordinates for γ;
- list all 9 possible positive roots;
- list 3 pairs of positive roots that form a pair of simple roots of a sub-root system of type \qquad
- list 3 pairs of positive roots that form a pair of simple roots for a sub-root system of type \qquad

