

MATHEMATICAL TRIPOS Part III

Friday 7 June 2002 1.30 to 3.30

PAPER 9

EXTREMAL GRAPH THEORY

Attempt **THREE** questions There are **four** questions in total The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Let $t(r, \epsilon, n)$ be the maximum value of t such that every graph of order n and size at least

$$\left(1 - \frac{1}{r} + \epsilon\right) \binom{n}{2}$$

contains $K_{r+1}(t)$.

Prove that if $r \ge 2$ and $\epsilon > 0$ are fixed then $t(r, \epsilon, n) \to \infty$ as $n \to \infty$.

Describe how $t(r, \epsilon, n)$ grows as a function of n, justifying your answer.

2 State what is meant by a *stable matching* in a bipartite graph.

Prove that every bipartite graph with preference assignment has a stable matching.

Let bg be an edge of a bipartite graph with preference assignment, such that g is b's worst choice and b is g's worst choice. Show that, if bg occurs in some stable matching, then it occurs in every stable matching.

Prove that, if G is a bipartite graph, then $\chi'_{\ell}(G) = \chi'(G)$, where $\chi'_{\ell}(G)$ is the list-chromatic-index and $\chi'(G)$ is the chromatic index of G.

3 What is meant by a graph being k-linked? Prove that a 22k-connected graph is k-linked. [You may assume without proof that a 22k-connected graph has a subcontraction H with $2\delta(H) \ge |H| + 4k - 1$.]

Show that a (3k - 2)-connected graph need not be k-linked.

4 State and prove Szemerédi's Regularity Lemma.

[You may assume without proof a form of the Cauchy-Schwarz inequality with deviation, and also that $|d(U', W') - d(U, W)| \leq 2\delta$ for any pair (U, W) with $U' \subset U$, $W' \subset W$, $|U'| \geq (1-\delta)|U|$, $|W'| \geq (1-\delta)|W|$.]

Let F be a graph with $\chi(F) = r+1$ and let $\epsilon > 0$. Show that, if n is large, then every graph G of order n not containing F must have a subgraph H, with $e(G) - e(H) < \epsilon n^2$, such that H contains no K_{r+1} .