

MATHEMATICAL TRIPOS Part III

Friday 30 May 2003 9 to 11

PAPER 13

EXTREMAL COMBINATORICS

Attempt **TWO** questions. There are **four** questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 3

 $\mathbf{4}$

 $\mathbf{2}$

1 Let $\mathcal{A} \subset [n]^{(k)}$. Show that if m is a prime power, and $|A \cap B| \not\equiv k \pmod{m}$ for all distinct $A, B \in \mathcal{A}$, then $|\mathcal{A}| \leq {n \choose m-1}$.

Either derive two significant applications of this result,

or show how it might fail if m is not a prime power.

2 State and prove the Ahlswede-Khachatrian theorem, giving the value of M(n, k, t), the maximum size of a *t*-intersecting family $\mathcal{A} \subset [n]^{(k)}$.

- (a) Let the number of *r*-uniform hypergraphs on vertex set [n] that have the hereditary property \mathcal{P} be $d_n^{\binom{n}{r}}$. Prove that d_n decreases with n.
 - (b) Prove that a strongly (r+t)-saturated *r*-uniform hypergraph of order *n* has at least $\binom{n}{r} \binom{n-t}{r}$ edges.
 - (a) Prove that the subset \mathcal{A} of the vertices of the *n*-cube has vertex boundary at least as large as that of \mathcal{I} , the initial segment of the cube order with $|\mathcal{I}| = |\mathcal{A}|$.
 - (b) State and prove the Four Functions Theorem.

Derive the Harris-Kleitman correlation inequality.

Let $\mathcal{A}_1, \ldots, \mathcal{A}_k$ be intersecting families in $\mathcal{P}[n]$. Prove that

$$\left| \bigcup_{i=1}^k \mathcal{A}_i \right| \le 2^n - 2^{n-k} \,.$$