PAPER 13

EXTREMAL COMBINATORICS

Attempt TWO questions
There are four questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let $\mathcal{A} \subset[n]^{(k)}$. Show that if m is a prime power, and $|A \cap B| \not \equiv k(\bmod m)$ for all distinct $A, B \in \mathcal{A}$, then $|\mathcal{A}| \leq\binom{ n}{m-1}$.

Either derive two significant applications of this result,
or show how it might fail if m is not a prime power.

2 State and prove the Ahlswede-Khachatrian theorem, giving the value of $M(n, k, t)$, the maximum size of a t-intersecting family $\mathcal{A} \subset[n]^{(k)}$.

3 (a) Let the number of r-uniform hypergraphs on vertex set $[n]$ that have the hereditary property \mathcal{P} be $d_{n}^{\left(n_{n}^{n}\right)}$. Prove that d_{n} decreases with n.
(b) Prove that a strongly $(r+t)$-saturated r-uniform hypergraph of order n has at least $\binom{n}{r}-\binom{n-t}{r}$ edges.
(a) Prove that the subset \mathcal{A} of the vertices of the n-cube has vertex boundary at least as large as that of \mathcal{I}, the initial segment of the cube order with $|\mathcal{I}|=|\mathcal{A}|$.
(b) State and prove the Four Functions Theorem.

Derive the Harris-Kleitman correlation inequality.
Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ be intersecting families in $\mathcal{P}[n]$. Prove that

$$
\left|\bigcup_{i=1}^{k} \mathcal{A}_{i}\right| \leq 2^{n}-2^{n-k}
$$

