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1 Let Ω be a domain in Rn.

(a) State and prove the mean value properties for a C2 harmonic function in Ω.

(b) State and prove the strong maximum principle for a C2 harmonic function in Ω.

(c) Prove that u ∈ C2(Ω) is harmonic in Ω if and only if u is continuous in Ω and satisfies
the following two conditions: (i) if v ∈ C2(Ω) and u− v has a local maximum at x0 ∈ Ω,
then ∆ v(x0) > 0 and (ii) if v ∈ C2(Ω) and u − v has a local minimum at x0 ∈ Ω, then
∆ v(x0) 6 0.

You may use without proof any standard existence theorem for harmonic functions provided
you clearly state it.

2 For 1 6 i, j 6 n, let aij be bounded, measurable functions on a bounded domain
Ω ⊂ Rn. Suppose that aij = aji and aij(x)ζiζj > λ|ζ|2 for some constant λ > 0 and all
x ∈ Ω, ζ ∈ Rn, and f ∈ L2(Ω). Consider the Dirichlet problem

Di(aijDju) = f in Ω, u = 0 on ∂ Ω. (?)

(a) Define what it means for a function u ∈W 1,2
0 (Ω) to be a weak solution to (?).

(b) Set Q(u, v) =
∫

Ω
aijDiuDjv for u, v ∈W 1,2

0 (Ω). Show that (Q(u, u))1/2 defines a norm
on W 1,2

0 (Ω) equivalent to the usual norm, and use this fact to prove that the Dirichlet
problem (?) has a unique weak solution u ∈W 1,2

0 (Ω).

(c) Find an appropriate functional F : W 1,2
0 (Ω)→ R such that any critical point of F is

a solution to the problem (?). Use F and the direct method of the calculus of variations
to give another proof of existence of a weak solution to (?).

You may use without proof standard theorems in linear functional analysis and Sobolev
space theory provided you clearly state them.
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3 Let n > 3 and let Ω be a bounded domain in Rn. Define a map T : L2(Ω) →
W 1,2

0 (Ω) by setting Tv = u where u ∈W 1,2
0 (Ω) solves ∆u = v weakly.

(a) Prove that the map T is well defined.

(b) Prove that T is a bounded, linear map.

(c) Suppose w ∈ Lp(Ω) for some p > n. Prove that the operator K : L2(Ω) → L2(Ω)
defined by Kv = wTv is compact.

(d) Deduce that if w ∈ Lp(Ω) for some p > n, then ∆u− wu = f is uniquely solvable in
W 1,2

0 (Ω) for each f ∈ L2(Ω) if and only if ∆u − wu = 0 has no non-trivial solutions in
W 1,2

0 (Ω).

You may use without proof standard theorems in linear functional analysis and Sobolev
space theory provided you clearly state them.

4 Let Lu ≡ aijDiju + bjDju be a uniformly elliptic operator in a bounded domain
Ω ⊂ Rn, where the coefficients aij , bj are bounded and measurable.

(a) State the weak maximum principle for C2(Ω) ∩ C0(Ω) subsolutions of the equation
Lu = 0 in Ω.

(b) Suppose that u, v ∈ C2(Ω)∩C0(Ω), f ∈ C0(Ω), u satisfies Lu = f in Ω and v satisfies
Lv > 1 in Ω and v 6 0 on ∂ Ω. Prove that

u(x) >

(
sup

Ω
f+

)
v(x) + inf

∂ Ω
u

for all x ∈ Ω. Here f+(x) = max {f(x), 0}.

(c) Deduce that if Ω is a bounded domain in Rn with 0 ∈ Ω, then for any function
w ∈ C2(Ω),

w(x) > 1
2n

(
sup

Ω
(∆w)+

)
(|x|2 − d2) + inf

∂ Ω
w

for all x ∈ Ω, where d = diam (Ω).
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5 (a) Prove that a function u is weakly differentiable in an open subset Ω of Rn if
and only if it is weakly differentiable in a neighborhood of each point of Ω.

(b) Let n > 2 and let Ω be an open subset of Rn, x0 ∈ Ω and u a bounded function
on Ω. If u ∈ C1(Ω \ {x0}) with Du ∈ L1

loc (Ω), prove that u is weakly differentiable in Ω
with the weak partial derivatives equal to the classical partial derivatives in Ω\{x0}. Give
an example to show that in case n = 1, this conclusion cannot be made under the same
hypotheses on u.

(c) Let θ ∈ (0, 1]. Prove that there exists a constant C depending only on n and θ such
that

∫
BR

u2 6 CR2

∫
BR

|Du|2

for every function u ∈W 1,2(BR) with |{x ∈ BR : u(x) = 0}| > θωnR
n, where BR denotes

an open ball in Rn with radius R. Here for a measurable subset A of Rn, |A| denotes
the n-dimensional Lebesgue measure of A and ωn = |B1|. (Hint: consider the case R = 1
first.)

6 (a) Let Ω be a domain in Rn and u ∈ W 1,2(Ω). For h 6= 0 and k ∈ {1, 2, . . . , n},
let ∆h

k u(x) = h−1 (u(x+ hek)− u(x)) where ek is the kth standard basis vector in Rn.
Prove that ∆h

k u ∈ L2(Ω′) and ‖∆h
k u‖L2(Ω′) 6 ‖Du‖L2(Ω) for each subdomain Ω′ ⊂⊂ Ω

and 0 < |h| < dist (Ω′, ∂ Ω).

(b) Suppose f ∈ L2(Ω) and u ∈W 1,2(Ω) is a weak solution of

∆u = f in Ω.

Prove that u ∈ W 2,2
loc (Ω) and that for each subdomain Ω′ ⊂⊂ Ω, there exists a constant

C = C(n, dist (Ω′, ∂ Ω)) such that

‖u‖W 2,2(Ω′) 6 C
(
‖u‖W 1,2(Ω) + ‖f‖L2(Ω)

)
.

END OF PAPER

Paper 13


	Rubric
	1
	2
	3
	4
	5
	6

