

MATHEMATICAL TRIPOS Part III

Friday 30 May 2008 9.00 to 12.00

PAPER 13

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

- 1 Let Ω be a domain in \mathbb{R}^n .
- (a) State and prove the mean value properties for a C^2 harmonic function in Ω .
- (b) State and prove the strong maximum principle for a C^2 harmonic function in Ω .

(c) Prove that $u \in C^2(\Omega)$ is harmonic in Ω if and only if u is continuous in Ω and satisfies the following two conditions: (i) if $v \in C^2(\Omega)$ and u - v has a local maximum at $x_0 \in \Omega$, then $\Delta v(x_0) \ge 0$ and (ii) if $v \in C^2(\Omega)$ and u - v has a local minimum at $x_0 \in \Omega$, then $\Delta v(x_0) \le 0$.

You may use without proof any standard existence theorem for harmonic functions provided you clearly state it.

2 For $1 \leq i, j \leq n$, let a_{ij} be bounded, measurable functions on a bounded domain $\Omega \subset \mathbf{R}^n$. Suppose that $a_{ij} = a_{ji}$ and $a_{ij}(x)\zeta^i\zeta^j \geq \lambda|\zeta|^2$ for some constant $\lambda > 0$ and all $x \in \Omega, \zeta \in \mathbf{R}^n$, and $f \in L^2(\Omega)$. Consider the Dirichlet problem

$$D_i(a_{ij}D_ju) = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega.$$
 (*)

(a) Define what it means for a function $u \in W_0^{1,2}(\Omega)$ to be a weak solution to (\star) .

(b) Set $Q(u, v) = \int_{\Omega} a_{ij} D_i u D_j v$ for $u, v \in W_0^{1,2}(\Omega)$. Show that $(Q(u, u))^{1/2}$ defines a norm on $W_0^{1,2}(\Omega)$ equivalent to the usual norm, and use this fact to prove that the Dirichlet problem (\star) has a unique weak solution $u \in W_0^{1,2}(\Omega)$.

(c) Find an appropriate functional $\mathcal{F} : W_0^{1,2}(\Omega) \to \mathbf{R}$ such that any critical point of \mathcal{F} is a solution to the problem (*). Use \mathcal{F} and the direct method of the calculus of variations to give another proof of existence of a weak solution to (*).

You may use without proof standard theorems in linear functional analysis and Sobolev space theory provided you clearly state them.

Paper 13

3 Let $n \ge 3$ and let Ω be a bounded domain in \mathbf{R}^n . Define a map $T : L^2(\Omega) \to W_0^{1,2}(\Omega)$ by setting Tv = u where $u \in W_0^{1,2}(\Omega)$ solves $\Delta u = v$ weakly.

(a) Prove that the map T is well defined.

(b) Prove that T is a bounded, linear map.

(c) Suppose $w \in L^p(\Omega)$ for some p > n. Prove that the operator $K : L^2(\Omega) \to L^2(\Omega)$ defined by Kv = wTv is compact.

(d) Deduce that if $w \in L^p(\Omega)$ for some p > n, then $\Delta u - wu = f$ is uniquely solvable in $W_0^{1,2}(\Omega)$ for each $f \in L^2(\Omega)$ if and only if $\Delta u - wu = 0$ has no non-trivial solutions in $W_0^{1,2}(\Omega)$.

You may use without proof standard theorems in linear functional analysis and Sobolev space theory provided you clearly state them.

4 Let $L u \equiv a_{ij}D_{ij}u + b_jD_ju$ be a uniformly elliptic operator in a bounded domain $\Omega \subset \mathbf{R}^n$, where the coefficients a_{ij}, b_j are bounded and measurable.

(a) State the weak maximum principle for $C^2(\Omega) \cap C^0(\overline{\Omega})$ subsolutions of the equation L u = 0 in Ω .

(b) Suppose that $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$, $f \in C^0(\overline{\Omega})$, u satisfies Lu = f in Ω and v satisfies $Lv \ge 1$ in Ω and $v \le 0$ on $\partial \Omega$. Prove that

$$u(x) \ge \left(\sup_{\Omega} f^{+}\right) v(x) + \inf_{\partial \Omega} u$$

for all $x \in \Omega$. Here $f^+(x) = \max \{f(x), 0\}$.

(c) Deduce that if Ω is a bounded domain in \mathbf{R}^n with $0 \in \Omega$, then for any function $w \in C^2(\overline{\Omega})$,

$$w(x) \ge \frac{1}{2n} \left(\sup_{\Omega} (\Delta w)^+ \right) (|x|^2 - d^2) + \inf_{\partial \Omega} w$$

for all $x \in \Omega$, where $d = \operatorname{diam}(\Omega)$.

Paper 13

[TURN OVER

4

5 (a) Prove that a function u is weakly differentiable in an open subset Ω of \mathbb{R}^n if and only if it is weakly differentiable in a neighborhood of each point of Ω .

(b) Let $n \ge 2$ and let Ω be an open subset of \mathbb{R}^n , $x_0 \in \Omega$ and u a bounded function on Ω . If $u \in C^1(\Omega \setminus \{x_0\})$ with $Du \in L^1_{\text{loc}}(\Omega)$, prove that u is weakly differentiable in Ω with the weak partial derivatives equal to the classical partial derivatives in $\Omega \setminus \{x_0\}$. Give an example to show that in case n = 1, this conclusion cannot be made under the same hypotheses on u.

(c) Let $\theta \in (0,1]$. Prove that there exists a constant C depending only on n and θ such that

$$\int_{B_R} u^2 \leqslant C R^2 \int_{B_R} |Du|^2$$

for every function $u \in W^{1,2}(B_R)$ with $|\{x \in B_R : u(x) = 0\}| \ge \theta \omega_n R^n$, where B_R denotes an open ball in \mathbf{R}^n with radius R. Here for a measurable subset A of \mathbf{R}^n , |A| denotes the *n*-dimensional Lebesgue measure of A and $\omega_n = |B_1|$. (Hint: consider the case R = 1first.)

6 (a) Let Ω be a domain in \mathbb{R}^n and $u \in W^{1,2}(\Omega)$. For $h \neq 0$ and $k \in \{1, 2, ..., n\}$, let $\Delta_k^h u(x) = h^{-1}(u(x + he_k) - u(x))$ where e_k is the kth standard basis vector in \mathbb{R}^n . Prove that $\Delta_k^h u \in L^2(\Omega')$ and $\|\Delta_k^h u\|_{L^2(\Omega')} \leq \|Du\|_{L^2(\Omega)}$ for each subdomain $\Omega' \subset \Omega$ and $0 < |h| < \operatorname{dist}(\Omega', \partial \Omega)$.

(b) Suppose $f \in L^2(\Omega)$ and $u \in W^{1,2}(\Omega)$ is a weak solution of

$$\Delta u = f \text{ in } \Omega.$$

Prove that $u \in W^{2,2}_{\text{loc}}(\Omega)$ and that for each subdomain $\Omega' \subset \subset \Omega$, there exists a constant $C = C(n, \text{dist}(\Omega', \partial \Omega))$ such that

 $||u||_{W^{2,2}(\Omega')} \leq C \left(||u||_{W^{1,2}(\Omega)} + ||f||_{L^{2}(\Omega)} \right).$

END OF PAPER