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1 Let M be a smooth manifold.

(a) Define the tangent bundle TM of M and show that it can be endowed in a
natural way with a smooth structure making it a vector bundle over M .

(b) Define the cotangent bundle T ∗M of M and show that it can be endowed in a
natural way with a smooth structure making it a vector bundle over M .

(c) Are TM and T ∗M isomorphic as vector bundles? Justify your answer.

2 Let (M, g) be an n-dimensional Riemannian manifold and ∇ its Levi-Civita
connection.

(a) Let X be a smooth vector field on M . Define the divergence of X as the function
div X : M → R given by div X(p) = trace(v 7→ (∇vX)(p)).

Fix a point p ∈ M . Suppose that there exist a neighbourhood U of p and n smooth
vector fields E1, . . . , En defined on U such that {E1, . . . , En} is an orthonormal basis at
every point of U and (∇Ei

Ej)(p) = 0 for all i and j. Show that divX(p) =
∑n

i=1 Ei(fi)(p)
where X =

∑n
i=1 fiEi.

(b) Suppose M is orientable and let ωg be its Riemannian volume form. For
i = 1, . . . , n, let ωi be the 1-forms on U defined by ωi(Ej) = δij , where {E1, . . . , En}
is a frame as in (a) which is compatible with the orientation of M . Consider the (n− 1)-
forms θi := ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn, where ω̂i indicates that the form ωi is omitted from
the product. Show that

ν =
∑

i

(−1)i+1fi θi

where ν is the (n− 1)-form defined by ν(Y1, . . . , Yn−1) = ωg(X, Y1, . . . , Yn−1).

(c) Show that dν = (divX)ωg.

[You may assume that for any 1-form α, dα(X, Y ) = Xα(Y )−Y α(X)−α([X, Y ]).]

(d) Suppose M is compact and orientable and let f be any smooth function. Show
that ∫

M

X(f) ωg = −
∫

M

f div X ωg.
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3 Let A be a connection on a vector bundle E.

(a) Using local coordinates on the base manifold and a local trivialization of E,
give an explicit local formula for the covariant derivative dA induced by A and acting on
the sections of E. Explain how to extend dA, using an appropriate version of the Leibnitz
rule, to the differential forms with values in E and to the differential forms with values in
the endomorphism bundle EndE. For both cases, include explicit formulas for dA in local
trivializations.

(b) Define the curvature F of a connection A, showing that F is a well-defined
2-form with values in EndE. Prove that if σ be an E-valued r-form, then d2

A(σ) = F ∧ σ.

(c) Prove the Bianchi identity dAF = 0. By using the Bianchi identity or otherwise,
show that if E is a vector bundle of rank 1, then F is a closed form and its de Rham
cohomology class is independent of the choice of connection A.

[Preliminary results on connections may be used without proof provided these are
clearly stated.]

4 Let M be a smooth n-dimensional manifold.

(a) Let M̂ be the set of pairs (p, op), where p ∈ M and op is one of the two
orientations of TpM . Let π : M̂ → M be π(p, op) = p. Given an open oriented set U ⊂ M

with orientation form ω ∈ Ωn(U) we let Û ⊂ M̂ be the set of pairs (p, op), where p ∈ U

and op is the orientation of TpM determined by ωp. Show that M̂ has a topology such that
Û is open and π maps Û homeomorphically onto U for every oriented open set U ⊂ M .

(b) Show that M̂ has a smooth structure such that π maps Û diffeomorphically
onto U for every oriented open set U ⊂ M . Show that M̂ has a canonical orientation.

(c) Let M be a connected smooth manifold. Show that M̂ has at most two
connected components and that M is orientable if and only if M̂ is not connected.

5 (a) State the Hodge decomposition theorem.

(b) Let M be a compact Riemannian manifold with Ric > 0. Show that any
harmonic 1-form is parallel. [You may assume that if ω is a harmonic 1-form and X is
the vector field dual to ω then,

−∆
(
|ω|2/2

)
= |∇ω|2 + Ric(X, X),

where ∆ is the Laplace-Beltrami operator.]

(c) Show that a compact connected Riemannian manifold of dimension n with
Ric > 0 has first Betti number less than or equal to n. Give an example of a compact
manifold of dimension > 3 which does not admit a metric of non-negative Ricci curvature.
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