PAPER 15

DIFFERENTIAL GEOMETRY

Attempt THREE questions.
There are $\boldsymbol{F I V E}$ questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury Tag
Script paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let M be a smooth manifold.
(a) Define the tangent bundle $T M$ of M and show that it can be endowed in a natural way with a smooth structure making it a vector bundle over M.
(b) Define the cotangent bundle $T^{*} M$ of M and show that it can be endowed in a natural way with a smooth structure making it a vector bundle over M.
(c) Are $T M$ and $T^{*} M$ isomorphic as vector bundles? Justify your answer.

2 Let (M, g) be an n-dimensional Riemannian manifold and ∇ its Levi-Civita connection.
(a) Let X be a smooth vector field on M. Define the divergence of X as the function $\operatorname{div} X: M \rightarrow \mathbf{R}$ given by $\operatorname{div} X(p)=\operatorname{trace}\left(v \mapsto\left(\nabla_{v} X\right)(p)\right)$.

Fix a point $p \in M$. Suppose that there exist a neighbourhood U of p and n smooth vector fields E_{1}, \ldots, E_{n} defined on U such that $\left\{E_{1}, \ldots, E_{n}\right\}$ is an orthonormal basis at every point of U and $\left(\nabla_{E_{i}} E_{j}\right)(p)=0$ for all i and j. Show that $\operatorname{div} X(p)=\sum_{i=1}^{n} E_{i}\left(f_{i}\right)(p)$ where $X=\sum_{i=1}^{n} f_{i} E_{i}$.
(b) Suppose M is orientable and let ω_{g} be its Riemannian volume form. For $i=1, \ldots, n$, let ω_{i} be the 1 -forms on U defined by $\omega_{i}\left(E_{j}\right)=\delta_{i j}$, where $\left\{E_{1}, \ldots, E_{n}\right\}$ is a frame as in (a) which is compatible with the orientation of M. Consider the $(n-1)$ forms $\theta_{i}:=\omega_{1} \wedge \cdots \wedge \widehat{\omega}_{i} \wedge \cdots \wedge \omega_{n}$, where $\widehat{\omega}_{i}$ indicates that the form ω_{i} is omitted from the product. Show that

$$
\nu=\sum_{i}(-1)^{i+1} f_{i} \theta_{i}
$$

where ν is the $(n-1)$-form defined by $\nu\left(Y_{1}, \ldots, Y_{n-1}\right)=\omega_{g}\left(X, Y_{1}, \ldots, Y_{n-1}\right)$.
(c) Show that $d \nu=(\operatorname{div} X) \omega_{g}$.
[You may assume that for any 1-form $\alpha, d \alpha(X, Y)=X \alpha(Y)-Y \alpha(X)-\alpha([X, Y])$.
(d) Suppose M is compact and orientable and let f be any smooth function. Show that

$$
\int_{M} X(f) \omega_{g}=-\int_{M} f \operatorname{div} X \omega_{g}
$$

3 Let A be a connection on a vector bundle E.
(a) Using local coordinates on the base manifold and a local trivialization of E, give an explicit local formula for the covariant derivative d_{A} induced by A and acting on the sections of E. Explain how to extend d_{A}, using an appropriate version of the Leibnitz rule, to the differential forms with values in E and to the differential forms with values in the endomorphism bundle End E. For both cases, include explicit formulas for d_{A} in local trivializations.
(b) Define the curvature F of a connection A, showing that F is a well-defined 2-form with values in End E. Prove that if σ be an E-valued r-form, then $d_{A}^{2}(\sigma)=F \wedge \sigma$.
(c) Prove the Bianchi identity $d_{A} F=0$. By using the Bianchi identity or otherwise, show that if E is a vector bundle of rank 1 , then F is a closed form and its de Rham cohomology class is independent of the choice of connection A.
[Preliminary results on connections may be used without proof provided these are clearly stated.]

4 Let M be a smooth n-dimensional manifold.
(a) Let \widehat{M} be the set of pairs $\left(p, o_{p}\right)$, where $p \in M$ and o_{p} is one of the two orientations of $T_{p} M$. Let $\pi: \widehat{M} \rightarrow M$ be $\pi\left(p, o_{p}\right)=p$. Given an open oriented set $U \subset M$ with orientation form $\omega \in \Omega^{n}(U)$ we let $\widehat{U} \subset \widehat{M}$ be the set of pairs $\left(p, o_{p}\right)$, where $p \in U$ and o_{p} is the orientation of $T_{p} M$ determined by ω_{p}. Show that \widehat{M} has a topology such that \widehat{U} is open and π maps \widehat{U} homeomorphically onto U for every oriented open set $U \subset M$.
(b) Show that \widehat{M} has a smooth structure such that π maps \widehat{U} diffeomorphically onto U for every oriented open set $U \subset M$. Show that \widehat{M} has a canonical orientation.
(c) Let M be a connected smooth manifold. Show that \widehat{M} has at most two connected components and that M is orientable if and only if \widehat{M} is not connected.

5 (a) State the Hodge decomposition theorem.
(b) Let M be a compact Riemannian manifold with Ric $\geqslant 0$. Show that any harmonic 1-form is parallel. [You may assume that if ω is a harmonic 1-form and X is the vector field dual to ω then,

$$
-\Delta\left(|\omega|^{2} / 2\right)=|\nabla \omega|^{2}+\operatorname{Ric}(X, X)
$$

where Δ is the Laplace-Beltrami operator.]
(c) Show that a compact connected Riemannian manifold of dimension n with Ric $\geqslant 0$ has first Betti number less than or equal to n. Give an example of a compact manifold of dimension $\geqslant 3$ which does not admit a metric of non-negative Ricci curvature.

END OF PAPER

Paper 15

