MATHEMATICAL TRIPOS Part III

Friday 1 June 2007 9.00 to 12.00

PAPER 15

DIFFERENTIAL GEOMETRY

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 Let M be a smooth manifold.

(a) Define the tangent bundle TM of M and show that it can be endowed in a natural way with a smooth structure making it a vector bundle over M.

(b) Define the cotangent bundle T^*M of M and show that it can be endowed in a natural way with a smooth structure making it a vector bundle over M.

(c) Are TM and T^*M isomorphic as vector bundles? Justify your answer.

2 Let (M,g) be an *n*-dimensional Riemannian manifold and ∇ its Levi-Civita connection.

(a) Let X be a smooth vector field on M. Define the *divergence* of X as the function $\operatorname{div} X : M \to \mathbf{R}$ given by $\operatorname{div} X(p) = \operatorname{trace}(v \mapsto (\nabla_v X)(p)).$

Fix a point $p \in M$. Suppose that there exist a neighbourhood U of p and n smooth vector fields E_1, \ldots, E_n defined on U such that $\{E_1, \ldots, E_n\}$ is an orthonormal basis at every point of U and $(\nabla_{E_i} E_j)(p) = 0$ for all i and j. Show that $\operatorname{div} X(p) = \sum_{i=1}^n E_i(f_i)(p)$ where $X = \sum_{i=1}^n f_i E_i$.

(b) Suppose M is orientable and let ω_g be its Riemannian volume form. For $i = 1, \ldots, n$, let ω_i be the 1-forms on U defined by $\omega_i(E_j) = \delta_{ij}$, where $\{E_1, \ldots, E_n\}$ is a frame as in (a) which is compatible with the orientation of M. Consider the (n-1)-forms $\theta_i := \omega_1 \wedge \cdots \wedge \widehat{\omega}_i \wedge \cdots \wedge \omega_n$, where $\widehat{\omega}_i$ indicates that the form ω_i is omitted from the product. Show that

$$\nu = \sum_i (-1)^{i+1} f_i \, \theta_i$$

where ν is the (n-1)-form defined by $\nu(Y_1, \ldots, Y_{n-1}) = \omega_g(X, Y_1, \ldots, Y_{n-1})$.

(c) Show that $d\nu = (\operatorname{div} X) \omega_g$.

[You may assume that for any 1-form α , $d\alpha(X,Y) = X\alpha(Y) - Y\alpha(X) - \alpha([X,Y])$.]

(d) Suppose M is compact and orientable and let f be any smooth function. Show that

$$\int_M X(f)\,\omega_g = -\int_M f\,\mathrm{div}\,X\,\omega_g.$$

3 Let A be a connection on a vector bundle E.

(a) Using local coordinates on the base manifold and a local trivialization of E, give an explicit local formula for the covariant derivative d_A induced by A and acting on the sections of E. Explain how to extend d_A , using an appropriate version of the Leibnitz rule, to the differential forms with values in E and to the differential forms with values in the endomorphism bundle End E. For both cases, include explicit formulas for d_A in local trivializations.

(b) Define the curvature F of a connection A, showing that F is a well-defined 2-form with values in End E. Prove that if σ be an E-valued r-form, then $d_A^2(\sigma) = F \wedge \sigma$.

(c) Prove the Bianchi identity $d_A F = 0$. By using the Bianchi identity or otherwise, show that if E is a vector bundle of rank 1, then F is a closed form and its de Rham cohomology class is independent of the choice of connection A.

[Preliminary results on connections may be used without proof provided these are clearly stated.]

4 Let M be a smooth n-dimensional manifold.

(a) Let \widehat{M} be the set of pairs (p, o_p) , where $p \in M$ and o_p is one of the two orientations of T_pM . Let $\pi : \widehat{M} \to M$ be $\pi(p, o_p) = p$. Given an open oriented set $U \subset M$ with orientation form $\omega \in \Omega^n(U)$ we let $\widehat{U} \subset \widehat{M}$ be the set of pairs (p, o_p) , where $p \in U$ and o_p is the orientation of T_pM determined by ω_p . Show that \widehat{M} has a topology such that \widehat{U} is open and π maps \widehat{U} homeomorphically onto U for every oriented open set $U \subset M$.

(b) Show that \widehat{M} has a smooth structure such that π maps \widehat{U} diffeomorphically onto U for every oriented open set $U \subset M$. Show that \widehat{M} has a canonical orientation.

(c) Let M be a connected smooth manifold. Show that \widehat{M} has at most two connected components and that M is orientable if and only if \widehat{M} is not connected.

5 (a) State the Hodge decomposition theorem.

(b) Let M be a compact Riemannian manifold with Ric ≥ 0 . Show that any harmonic 1-form is parallel. [You may assume that if ω is a harmonic 1-form and X is the vector field dual to ω then,

$$-\Delta \left(|\omega|^2 / 2 \right) = |\nabla \omega|^2 + \operatorname{Ric}(X, X),$$

where Δ is the Laplace-Beltrami operator.]

(c) Show that a compact connected Riemannian manifold of dimension n with Ric ≥ 0 has first Betti number less than or equal to n. Give an example of a compact manifold of dimension ≥ 3 which does not admit a metric of non-negative Ricci curvature.

END OF PAPER

Paper 15